Free vibration response of a three-node shear flexible finite element for moderately deep shells

2003 ◽  
Vol 39 (4) ◽  
pp. 257-281 ◽  
Author(s):  
Humayun R.H. Kabir
2019 ◽  
Vol 37 (5) ◽  
pp. 1597-1616 ◽  
Author(s):  
Guangxin Wang ◽  
Lili Zhu ◽  
Ken Higuchi ◽  
Wenzhong Fan ◽  
Linjie Li

Purpose The purpose of this paper is to propose and analyze the free vibration response of the spatial curved beams with variable curvature, torsion and cross section, in which all the effects of rotary inertia, shear and axial deformations can be considered. Design/methodology/approach The governing equations for free vibration response of the spatial curved beams are derived in matrix formats, considering the variable curvature, torsion and cross section. Frobenius’ scheme and the dynamic stiffness method are applied to solve these equations. A computer program is coded in Mathematica according to the proposed method. Findings To assess the validity of the proposed solution, a convergence study is carried out on a cylindrical helical spring with a variable circular cross section, and a comparison is made with the finite element method (FEM) results in ABAQUS. Further, the present model is used for reciprocal spiral rods with variable circular cross section in different boundary conditions, and the comparison with FEM results shows that only a limited number of terms in the results provide a relatively accurate solution. Originality/value The numerical results show that only a limited number of terms are needed in series solutions and in the Taylor expansion series to ensure an accurate solution. In addition, with a simple modification, the present formulation is easy to extend to analyze a more complicated model by combining with finite element solutions or analyze the transient responses and stochastic responses of spatial curved beams by Laplace transformation or Fourier transformation.


2011 ◽  
Vol 471-472 ◽  
pp. 1177-1183
Author(s):  
Tasneem Pervez ◽  
F.K.S. Al-Jahwari ◽  
Abdennour Seibi

Free vibration analysis of arbitrarily laminated plates of quad, penta and hexagonal shapes, which have combinations of clamped, simply supported and free edge conditions is performed. The finite element formulation is based on first and higher order shear deformation theories to study the free vibration response of thick laminated composite plates. A finite element code is developed incorporating shear deformation theories using an 8-noded serendipity element. The effect of plate shape, arbitrary lamination and different edge conditions on natural frequencies and mode shapes are investigated. A systematic study is carried out to determine the influence of material orthotropy and aspect ratio on free vibration response. For various cases, the comparisons of results from present study showed good agreement with those published in the literature.


2006 ◽  
Vol 06 (01) ◽  
pp. 121-138 ◽  
Author(s):  
Z. I. SAKKA ◽  
J. A. ABDALLA ◽  
H. R. H. KABIR

The free vibration response of shear-flexible moderately-thick orthotropic cylindrical shell panels, with fixed edges, is investigated using an analytical approach. The governing partial differential equations are developed based on Sander's kinematics and are solved using generalized Navier's with a boundary continuous double Fourier series expansion. The frequencies and mode shapes from the analytical solution for various parametric ratios, including degree of orthotropy (stiffness ratio), radius-to-segment ratio and segment-to-thickness ratio are compared with the finite element solutions that are based on an eight-node 48 degrees of freedom shell element. The rate of convergence of the analytical solution method with respect to the number of Fourier series terms, for various parametric ratios, is presented. The results of the analytical solution are very comparable to that of the finite element solution. It is clear that the presented analytical solution can be used as a benchmark to calibrate and validate numerical and finite element solutions that usually involve approximation to shell theories.


2015 ◽  
Vol 752-753 ◽  
pp. 1029-1034
Author(s):  
Asnizah Sahekhaini ◽  
Pauziah Muhamad ◽  
Masayuki Kohiyama ◽  
Aminuddin Abu ◽  
Lee Kee Quen ◽  
...  

This paper presents a wavelet-based method of identification modal parameter and damage detection in a free vibration response. An algorithm for modal parameter identification and damage detection is purposed and complex Morlet wavelet is chosen as an analysis wavelet function. This paper only focuses on identification of natural frequencies of the structural system. The method utilizes both undamaged and damage experiment data of free vibration response of the truss structure system. Wavelet scalogram is utilizes for damage detection. The change of energy components for undamaged and damage structure is investigated from the plot of wavelet scalogram which corresponded to the detection of damage.


Sign in / Sign up

Export Citation Format

Share Document