The molecular basis of quantitative genetic variation in natural populations

1995 ◽  
Vol 10 (8) ◽  
pp. 324-328 ◽  
Author(s):  
Thomas Mitchell-Olds
1980 ◽  
Vol 77 (2) ◽  
pp. 1073-1077 ◽  
Author(s):  
C. C. Laurie-Ahlberg ◽  
G. Maroni ◽  
G. C. Bewley ◽  
J. C. Lucchesi ◽  
B. S. Weir

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Wen Huang ◽  
Richard F Lyman ◽  
Rachel A Lyman ◽  
Mary Anna Carbone ◽  
Susan T Harbison ◽  
...  

Mutation and natural selection shape the genetic variation in natural populations. Here, we directly estimated the spontaneous mutation rate by sequencing new Drosophila mutation accumulation lines maintained with minimal natural selection. We inferred strong stabilizing natural selection on quantitative traits because genetic variation among wild-derived inbred lines was much lower than predicted from a neutral model and the mutational effects were much larger than allelic effects of standing polymorphisms. Stabilizing selection could act directly on the traits, or indirectly from pleiotropic effects on fitness. However, our data are not consistent with simple models of mutation-stabilizing selection balance; therefore, further empirical work is needed to assess the balance of evolutionary forces responsible for quantitative genetic variation.


2018 ◽  
Author(s):  
Enoch Ng’oma ◽  
Wilton Fidelis ◽  
Kevin M. Middleton ◽  
Elizabeth G. King

AbstractThe nutritional conditions experienced by a population play a major role in shaping trait evolution in many taxa. Constraints exerted by nutrient limitation or nutrient imbalance can influence the maximal value that fitness components such as reproduction and lifespan attains, and organisms may shift how resources are allocated to different structures and functions in response to changes in nutrition. Whether the phenotypic changes associated with changes in nutrition represent an adaptive response is largely unknown. Further, it is unclear whether the response of fitness components to diet even has the potential to evolve in most systems. In this study, we use an admixed multiparental population of Drosophila melanogaster reared in three different diet conditions to estimate quantitative genetic parameters for lifespan and fecundity. We find significant genetic variation for both traits in our population and show that lifespan has moderate to high heritabilities within diets. Genetic correlations for lifespan between diets were significantly less than one, demonstrating a strong genotype by diet interaction. These findings demonstrate substantial standing genetic variation in our population that is comparable to natural populations and highlights the potential for adaptation to changing nutritional environments.


Author(s):  
Thomas Mitchell-Olds

Glacier National Park (GNP) is responsible for the management and preservation of biological diversity in the natural populations of plants and animals occurring within its boundaries. Information on existing levels of genetic variation within and among populations is a prerequisite for developing management strategies to maintain genetic diversity and to perform revegetation activities. We are using two methods to assess levels of genetic diversity and differentiation among populations: quantitative genetic analysis and isozyme (electrophoresis) analysis. To examine whether patterns of genetic variation and adaptation to local environments require that sites be revegetated with plants collected from nearby natural populations, or alternatively, whether transplants could be obtained from other sources; we are focussing on three experimental areas: 1. quantitative genetics; 2. electrophoresis, and 3. natural selection.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Annalise B Paaby ◽  
Amelia G White ◽  
David D Riccardi ◽  
Kristin C Gunsalus ◽  
Fabio Piano ◽  
...  

Embryogenesis is an essential and stereotypic process that nevertheless evolves among species. Its essentiality may favor the accumulation of cryptic genetic variation (CGV) that has no effect in the wild-type but that enhances or suppresses the effects of rare disruptions to gene function. Here, we adapted a classical modifier screen to interrogate the alleles segregating in natural populations of Caenorhabditis elegans: we induced gene knockdowns and used quantitative genetic methodology to examine how segregating variants modify the penetrance of embryonic lethality. Each perturbation revealed CGV, indicating that wild-type genomes harbor myriad genetic modifiers that may have little effect individually but which in aggregate can dramatically influence penetrance. Phenotypes were mediated by many modifiers, indicating high polygenicity, but the alleles tend to act very specifically, indicating low pleiotropy. Our findings demonstrate the extent of conditional functionality in complex trait architecture.


Author(s):  
Bruce Walsh ◽  
Michael Lynch

One of the major unresolved issues in quantitative genetics is what accounts for the amount of standing genetic variation in traits. A wide range of models, all reviewed in this chapter, have been proposed, but none fit the data, either giving too much variation or too little apparent stabilizing selection.


Genetics ◽  
1975 ◽  
Vol 80 (4) ◽  
pp. 785-805
Author(s):  
P T Spieth

ABSTRACT Electrophoretically detectable variation in the fungus Neurospora intermedia has been surveyed among isolates from natural populations in Malaya, Papua, Australia and Florida. The principal result is a pattern of genetic variation within and between populations that is qualitatively no different than the well documented patterns for Drosophila and humans. In particular, there is a high level of genetic variation, the majority of which occurs at the level of local populations. Evidence is presented which argues that N. intermedia has a population structure analogous to that of an annual vascular plant with a high level of vegetative reproduction. Sexual reproduction appears to be a regular feature in the biology of the species. Substantial heterokaryon function seems unlikely in natural populations of N. intermedia. Theoretical considerations concerning the mechanisms underlying the observed pattern of variation most likely should be consistent with haploid selection theory. The implications of this constraint upon the theory are discussed in detail, leading to the presentation of a model based upon the concept of environmental heterogeneity. The essence of the model, which is equally applicable to haploid and diploid situations, is a shifting distribution of multiple adaptive niches among local populations such that a given population has a small net selective pressure in favor of one allele or another, depending upon its particular distribution of niches. Gene flow among neighboring populations with differing net selective pressures is postulated as the principal factor underlying intrapopulational allozyme variation.


Genetics ◽  
1980 ◽  
Vol 95 (3) ◽  
pp. 727-742 ◽  
Author(s):  
R Frankham ◽  
D A Briscoe ◽  
R K Nurthen

ABSTRACT Abdominal bristle selection lines (three high and three low) and controls were founded from a marked homozygous line to measure the contribution of sex-linked "mutations" to selection response. Two of the low lines exhibited a period of rapid response to selection in females, but not in males. There were corresponding changes in female variance, in heritabilities in females, in the sex ratio (a deficiency of females) and in fitness, as well as the appearance of a mutant phenotype in females of one line. All of these changes were due to bb alleles (partial deficiencies for the rRNA tandon) in the X chromosomes of these lines, while the Y chromosomes remained wild-type bb+. We argue that the bb alleles arose by unequal crossing over in the rRNA tandon.—A prediction of this hypothesis is that further changes can occur in the rRNA tandon as selection is continued. This has now been shown to occur.—Our minimum estimate of the rate of occurrence of changes at the rRNA tandon is 3 × 10-4. As this is substantially higher than conventional mutation rates, the questions of the mechanisms and rates of origin of new quantitative genetic variation require careful re-examination.


Sign in / Sign up

Export Citation Format

Share Document