Vorticity distribution caused by three-dimensional disturbance in two-dimensional shear flow

1997 ◽  
Vol 21 (1) ◽  
pp. 29-46
Author(s):  
Akihiro Ishizawa ◽  
Tsuguo Takahashi
1995 ◽  
Vol 305 ◽  
pp. 281-305 ◽  
Author(s):  
P. C. Matthews ◽  
M. R. E. Proctor ◽  
N. O. Weiss

Convection in a compressible fiuid with an imposed vertical magnetic field is studied numerically in a three-dimensional Cartesian geometry with periodic lateral boundary conditions. Attention is restricted to the mildly nonlinear regime, with parameters chosen first so that convection at onset is steady, and then so that it is oscillatory.Steady convection occurs in the form of two-dimensional rolls when the magnetic field is weak. These rolls can become unstable to a mean horizontal shear flow, which in two dimensions leads to a pulsating wave in which the direction of the mean flow reverses. In three dimensions a new pattern is found in which the alignment of the rolls and the shear flow alternates.If the magnetic field is sufficiently strong, squares or hexagons are stable at the onset of convection. Both the squares and the hexagons have an asymmetrical topology, with upflow in plumes and downflow in sheets. For the squares this involves a resonance between rolls aligned with the box and rolls aligned digonally to the box. The preference for three-dimensional flow when the field is strong is a consequence of the compressibility of the layer- for Boussinesq magnetoconvection rolls are always preferred over squares at onset.In the regime where convection is oscillatory, the preferred planform for moderate fields is found to be alternating rolls - standing waves in both horizontal directions which are out of phase. For stronger fields, both alternating rolls and two-dimensional travelling rolls are stable. As the amplitude of convection is increased, either by dcereasing the magnetic field strength or by increasing the temperature contrast, the regular planform structure seen at onset is soon destroyed by secondary instabilities.


1958 ◽  
Vol 9 (2) ◽  
pp. 110-130 ◽  
Author(s):  
J. H. Horlock

SummaryA theory of the incompressible flow through two- and three-dimensional cascade actuator discs has been developed by several workers over the past ten years, and its accuracy has been confirmed in several experiments. This theory is briefly reviewed, and a parallel theory for subsonic compressible flow through actuator discs is developed. Approximate solutions for several examples are considered, including a compressible shear flow through a two-dimensional cascade, and a compressible flow through an annular cascade of guide vanes.


2021 ◽  
Vol 925 ◽  
Author(s):  
J.P. Parker ◽  
C.J. Howland ◽  
C.P. Caulfield ◽  
R.R. Kerswell

The breaking of internal gravity waves in the abyssal ocean is thought to be responsible for much of the mixing necessary to close oceanic buoyancy budgets. The exact mechanism by which these waves break down into turbulence remains an active area of research and can have significant implications on the mixing efficiency. Recent evidence has suggested that both shear instabilities and convective instabilities play a significant role in the breaking of an internal gravity wave in a high Richardson number mean shear flow. We perform a systematic analysis of the stability of a configuration of an internal gravity wave superimposed on a background shear flow first considered by Howland et al. (J. Fluid Mech., vol. 921, 2021, A24), using direct–adjoint looping to find the perturbation giving maximal energy growth on this evolving flow. We find that three-dimensional, convective mechanisms produce greater energy growth than their two-dimensional counterparts. In particular, we find close agreement with the direct numerical simulations of Howland et al. (J. Fluid Mech., 2021, in press), which demonstrated a clear three-dimensional mechanism causing breakdown to turbulence. The results are shown to hold at realistic Prandtl numbers. At low mean Richardson numbers, two-dimensional, shear-driven mechanisms produce greater energy growth.


1956 ◽  
Vol 1 (2) ◽  
pp. 142-162 ◽  
Author(s):  
I. M. Hall

This paper contains a theoretical investigation of the displacement effect of a pitot tube in a shear flow. Viscosity is neglected throughout so that the vorticity field alone is considered.It is first shown that a two-dimensional approach does not produce a large enough displacement effect because it does not include the stretching of vortex tubes that takes place around a three-dimensional pitot tube. Then the three-dimensional problem is considered. A solution is obtained in the plane of symmetry for a sphere in a shear flow. This solution is found by making an assumption about the rate of stetching of vortex tubes perpendicular to the plane of symmetry and then considering the shear flow as a small perturbation of a uniform flow. A solution in the plane of symmetry is sufficient to obtain the displacement effect, which is found to be of the same order as the experimental result obtained by Young & Maas (1936) for a conventional pitot tube. The sphere may be considered to represent a conventional pitot tube (of slightly smaller diameter), so it is concluded that a large part of the displacement effect of a pitot tube may be accounted for without the inclusion of viscosity, i.e. by consideration of the vorticity field alone.To a first approximation, the vorticity in the plane of symmetry is found to depend only on the distance from the centre of the sphere.An outline of shear flows past some two-dimensional bodies is given in an appendix. The bodies considered are a circular cylinder and a two-dimensional ‘pitot-tube’ consisting of two parallel semi-infinite plates.


1998 ◽  
Vol 373 ◽  
pp. 287-311 ◽  
Author(s):  
CYRUS K. AIDUN ◽  
YANNAN LU ◽  
E.-JIANG DING

An efficient and robust computational method, based on the lattice-Boltzmann method, is presented for analysis of impermeable solid particle(s) suspended in fluid with inertia. In contrast to previous lattice-Boltzmann approaches, the present method can be used for any solid-to-fluid density ratio. The details of the numerical technique and implementation of the boundary conditions are presented. The accuracy and robustness of the method is demonstrated by simulating the flow over a circular cylinder in a two-dimensional channel, a circular cylinder in simple shear flow, sedimentation of a circular cylinder in a two-dimensional channel, and sedimentation of a sphere in a three-dimensional channel. With a solid-to-fluid density ratio close to one, new results from two-dimensional and three-dimensional computational analysis of dynamics of an ellipse and an ellipsoid in a simple shear flow, as well as two-dimensional and three-dimensional results for sedimenting ellipses and prolate spheroids, are presented.


2011 ◽  
Vol 10 (2) ◽  
pp. 453-473 ◽  
Author(s):  
Jian-Jun Xu ◽  
Zhilin Li ◽  
John Lowengrub ◽  
Hongkai Zhao

AbstractIn this paper, we numerically investigate the effects of surfactant on drop-drop interactions in a 2D shear flow using a coupled level-set and immersed interface approach proposed in (Xu et al., J. Comput. Phys., 212 (2006), 590-616). We find that surfactant plays a critical and nontrivial role in drop-drop interactions. In particular, we find that the minimum distance between the drops is a non-monotone function of the surfactant coverage and Capillary number. This non-monotonic behavior, which does not occur for clean drops, is found to be due to the presence of Marangoni forces along the drop interfaces. This suggests that there are non-monotonic conditions for coalescence of surfactant-laden drops, as observed in recent experiments of Leal and co-workers. Although our study is two-dimensional, we believe that drop-drop interactions in three-dimensional flows should be qualitatively similar as the Maragoni forces in the near contact region in 3D should have a similar effect.


2018 ◽  
Vol 848 ◽  
pp. 508-544 ◽  
Author(s):  
Adrien Lefauve ◽  
J. L. Partridge ◽  
Qi Zhou ◽  
S. B. Dalziel ◽  
C. P. Caulfield ◽  
...  

Finite-amplitude manifestations of stratified shear flow instabilities and their spatio-temporal coherent structures are believed to play an important role in turbulent geophysical flows. Such shear flows commonly have layers separated by sharp density interfaces, and are therefore susceptible to the so-called Holmboe instability, and its finite-amplitude manifestation, the Holmboe wave. In this paper, we describe and elucidate the origin of an apparently previously unreported long-lived coherent structure in a sustained stratified shear flow generated in the laboratory by exchange flow through an inclined square duct connecting two reservoirs filled with fluids of different densities. Using a novel measurement technique allowing for time-resolved, near-instantaneous measurements of the three-component velocity and density fields simultaneously over a three-dimensional volume, we describe the three-dimensional geometry and spatio-temporal dynamics of this structure. We identify it as a finite-amplitude, nonlinear, asymmetric confined Holmboe wave (CHW), and highlight the importance of its spanwise (lateral) confinement by the duct boundaries. We pay particular attention to the spanwise vorticity, which exhibits a travelling, near-periodic structure of sheared, distorted, prolate spheroids with a wide ‘body’ and a narrower ‘head’. Using temporal linear stability analysis on the two-dimensional streamwise-averaged experimental flow, we solve for three-dimensional perturbations having two-dimensional, cross-sectionally confined eigenfunctions and a streamwise normal mode. We show that the dispersion relation and the three-dimensional spatial structure of the fastest-growing confined Holmboe instability are in good agreement with those of the observed confined Holmboe wave. We also compare those results with a classical linear analysis of two-dimensional perturbations (i.e. with no spanwise dependence) on a one-dimensional base flow. We conclude that the lateral confinement is an important ingredient of the confined Holmboe instability, which gives rise to the CHW, with implications for many inherently confined geophysical flows such as in valleys, estuaries, straits or deep ocean trenches. Our results suggest that the CHW is an example of an experimentally observed, inherently nonlinear, robust, long-lived coherent structure which has developed from a linear instability. We conjecture that the CHW is a promising candidate for a class of exact coherent states underpinning the dynamics of more disordered, yet continually forced stratified shear flows.


Sign in / Sign up

Export Citation Format

Share Document