Presence and localization of immunoreactive luteinizing hormone-releasing hormone (LHRH) within the olfactory bulbs of adult male and female rats

Peptides ◽  
1981 ◽  
Vol 2 (4) ◽  
pp. 493-496 ◽  
Author(s):  
Dean E. Dluzen ◽  
Victor D. Ramirez
1982 ◽  
Vol 37 (2) ◽  
pp. 246-259 ◽  
Author(s):  
Karl Folkers ◽  
John Humphries ◽  
Cyril Y. Bowers

Abstract Detailed structure-activity studies on inhibitors of the luteinizing hormone releasing hormone (LH-RH) have been described. The most potent ovulation inhibitors have substitutions in positions 1, 2, 3, and 6. Currently four basic structural requirements for potent antiovulatory activity are: a D-aromatic amino acid, such as D-Trp or D-Phe, in position 6; a D-Phe residue in position 2; substitutions in positions 1 and 3. For inhibitors based on substitutions in positions 2, 3, and 6, the substitution of a Pro, N-Me-Leu or D-Trp residue in position 3 is equally acceptable, and gives analogues which inhibit ovulation at 750 ^g/rat. For inhibitors based on substitutions in positions 1, 2, 3, and 6, D-Trp appears necessary in position 3 in order for ovulation to be inhibited at 200 μ/rat. Many analogues based on the [residue1, D-Phe2, D-Trp3, D-Trp6]-LH-RH sequence are known which inhibit ovulation at 200 μ/rat. These include those analogues having D- <Glu, Ac-Pro, N-Ac-Hyp and N-Ac-Thr in position 1. The choice between L- or Dresidues in this position is structure dependent (Ac-L-Pro > Ac-D-Pro, D- <Glu >L- <Glu, etc.). In addition, a "protected" N-terminal residue having some polar character appears to be important. Substitution of the dipeptide residue, <Glu-Pro-, into position 1 has produced a new category of potent ovulation inhibitors based on linear peptides longer than decapeptides. Continued studies on other analogues in this later class could provide more potent inhibitors by (1) utilizing new binding sites on or in the vicinity of the LH-RH receptor(s); (2) altering transportation properties; (3) producing "pro-drugs". The substitution of N-Me-Leu into position 7 was not advantageous, presumably because of the presence of bulky D-aromatic amino acids in position 6. Nonapeptide ethylamide analogues also had very low antiovulatory potencies. The analogue [chlorambucil1, Leu2, Leu3, D-Ala6]-LH-RH acted as an agonist, but also inhibited in a modified assay in vitro. Comparative assays measuring the inhibition of LH-RH, and inhibition of ovulation have emphasized other factors of importance to inhibitor design. Although all ovulation inhibitors active at 750 or 200 /μg/rat strongly inhibited in vivo, at a ratio of analogue to LH-RH of 166:1, other analogues of comparable in vitro potency have displayed a range of antiovulatory activities. Similar discrepancies have been observed in the results of in vivo LH-RH inhibition assays. The most potent ovulation inhibitors always inhibited LH-RH at 333:1 in adult male chimpanzees, and at 100:1 in adult male rats. The dissociation of the results of the LH-RH and antiovulatory assays have been rationalized in two cases. The Cpc-analogues were active in inhibiting LH-RH in rats and in chimpanzees when given i.V., but were inactive in rats when given s.c. which is the mode of administration in the antiovulatory assay. The results for inhibition of LH-RH in vivo paralleled the results for inhibition of ovulation, and raised a question as to differences in absorption of peptides though the lipid layers of subcutaneous tissue. The reduced in vivo activities of the L-Trp3 analogues in both the LH-RH and antiovulatory assays suggest an increase in enzymatic inactivation for these compounds. [D-Phe2, Pro3, D-Phe6]-LH-RH can inhibit endogenous LH-RH in the Rhesus monkey and inhibit ovulation. Infusion of [D-Phe2, Pro3, D-Trp6]-LH-RH at 375 ^ug/day for 4 days from a s.c. implanted minipump completely inhibited ovulation in cycling female rats and decreased serum LH levels in castrated rats. In contrast with LH-RH or des-Gly10- [D-Ala6]-LH-RH ethylamide the Pro3 analogue did not block uterine implantation sites of mated rats, indicating a difference in the mechanism of contraception for LH-RH agonists and inhibitors


2002 ◽  
Vol 106 (1-3) ◽  
pp. 27-32 ◽  
Author(s):  
I. Prieto ◽  
G. Arechaga ◽  
A.B. Segarra ◽  
F. Alba ◽  
M. de Gasparo ◽  
...  

2011 ◽  
Vol 40 (1) ◽  
pp. 83-92 ◽  
Author(s):  
Meena R. Sharma ◽  
Wojciech Dworakowski ◽  
Bernard H. Shapiro

Adult male and female rat hepatocytes were individually transplanted into the spleens of adult male and female rats. The recipients were euthanized at either eight, sixteen, thirty, or forty-five weeks following transplantation, at which time hepatic and splenic levels of liver-specific rat albumin mRNA as well as sex-dependent transcript levels of CYP2C11, -2C12, -2C7, -2A1, and -3A2—which accounts for > 60% of the total concentration of hepatic constituent cytochrome P450—were determined. Whereas the pre-infused hepatocytes expressed their expected cytochrome P450 sexual dimorphisms (female-specific CYP2C12, male-specific CYP3A2, and female-predominant CYP2A1), their post-transplantational competence now reflected the sexual dimorphisms of the recipient (as observed in the host’s liver), which supports the concept that the sex-dependent growth hormone circulating profiles are the determinants regulating the expression levels of hepatic cytochrome P450. Also expressed at normal concentrations in the pre-infused hepatocytes, male-specific CYP2C11 and female-predominant CYP2C7 were inexplicably undetectable in the spleens of both recipient males and females, regardless of the sex of the donor hepatocytes, almost one year after transplantation.


Sign in / Sign up

Export Citation Format

Share Document