sexual dimorphisms
Recently Published Documents


TOTAL DOCUMENTS

189
(FIVE YEARS 69)

H-INDEX

29
(FIVE YEARS 5)

2022 ◽  
Vol 12 ◽  
Author(s):  
Haidong Li ◽  
Lei Lu ◽  
Ruiyi Chen ◽  
Shanshan Li ◽  
Dongdong Xu

Most of fish species exhibit striking sexual dimorphism, particularly during growth. There are also sexual dimorphisms of internal organs and biological functions, including those of intestinal microbiota, which likely plays a key role in growth. In this study, the growth and intestinal microbiota of the female, male, and all-female Nibea albiflora (yellow drums) were comprehensively analyzed. The caged culture female and all-female yellow drums showed higher growth rates than males. A further analysis of the intestinal microbiota showed a significant difference in diversity between females and males in the summer, whereas there were no significant differences in the diversity and richness between females and males in the winter. In contrast, a significant difference in richness was observed between all-female and male fish, regardless of the season. Although the main composition of the intestinal microbiota showed no significant sex differences, the community structure of the intestinal microbiota of yellow drums did. Furthermore, the correlations between intestinal microbial communities are likely to be influenced by sex. The ecological processes of the intestinal microbial communities of the yellow drums showed clear sexual dimorphism. Further network analysis revealed that, although the main components of the network in the intestinal microbiota of female, male, and all-female fish were similar, the network structures showed significant sex differences. The negative interactions among microbial species were the dominant relationships in the intestinal ecosystem, and Bacteroidetes, Firmicutes, and Proteobacteria were identified as the functional keystone microbes. In addition, the functional pathways in the intestinal microbiota of yellow drums showed no significant sexual or seasonal differences. Based on the findings of this study, we gain a comprehensive understanding of the interactions between sex, growth, and intestinal microbiota in yellow drums.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12455
Author(s):  
Elisabeth Yarwood ◽  
Claudia Drees ◽  
Jeremy E. Niven ◽  
Wiebke Schuett

Background Individuals within the same species often differ in their metabolic rates, which may covary with behavioural traits (such as exploration), that are consistent across time and/or contexts, and morphological traits. Yet, despite the frequent occurrence of sexual dimorphisms in morphology and behaviour, few studies have assessed whether and how sexes differ in metabolic trait covariances. Methods We investigated sex-specific relationships among resting or active metabolic rate (RMR and AMR, respectively) with exploratory behaviour, measured independently of metabolic rate in a novel environment, body size and body mass, in Carabus hortensis ground beetles. Results RMR, AMR and exploratory behaviour were repeatable among individuals across time, except for male RMR which was unrepeatable. Female RMR neither correlated with exploratory behaviour nor body size/body mass. In contrast, AMR was correlated with both body size and exploratory behaviour. Males with larger body sizes had higher AMR, whereas females with larger body sizes had lower AMR. Both male and female AMR were significantly related to exploratory behaviour, though the relationships between AMR and exploration were body mass-dependent in males and temperature-dependent in females. Discussion Differences between sexes exist in the covariances between metabolic rate, body size and exploratory behaviour. This suggests that selection acts differently on males and females to produce these trait covariances with potentially important consequences for individual fitness.


2021 ◽  
Vol 9 (12) ◽  
pp. 232596712110253
Author(s):  
Tayt M. Ellison ◽  
Ilexa Flagstaff ◽  
Anthony E. Johnson

Background: Although most anterior cruciate ligament (ACL) injuries occur in male athletes, female athletes are consistently observed to be at a higher risk for sports-specific ACL injury. Purpose: To provide a thorough review of what is known about the sexual dimorphisms in ACL injury to guide treatment and prevention strategies and future research. Study Design: Narrative review. Methods: We conducted a comprehensive literature search for ACL-related studies published between January 1982 and September 2017 to identify pertinent studies regarding ACL injury epidemiology, prevention strategies, treatment outcomes, and dimorphisms. By performing a broad ACL injury search, we initially identified 11,453 articles. After applying additional qualifiers, we retained articles if they were published in English after 1980 and focused on sex-specific differences in any of 8 different topics: sex-specific reporting, difference in sports, selective training, hormonal effects, genetics, neuromuscular and kinematic control, anatomic differences, and outcomes. Results: A total of 122 articles met the inclusion criteria. In sum, the literature review indicated that female athletes are at significantly higher risk for ACL injuries than are their male counterparts, but the exact reasons for this were not clear. Initial studies focused on intrinsic differences between the sexes, whereas recent studies have shifted to focus on extrinsic factors to explain the increased risk. It is likely both intrinsic and extrinsic factors contribute to this increased risk, but further study is needed. In addition to female patients having an increased risk for ACL injuries, they are less likely than are male patients to undergo reconstructive surgery, and they experience worse postsurgical outcomes. Despite this, reconstructive surgery remains the gold standard when knee stability, return to sports, and high functional outcome scores are the goal, but further research is needed to determine why there is disparity in surgical rates and what surgical techniques optimize postsurgical outcomes for female patients. Conclusion: Male athletes often predominated the research concerning ACL injury and treatment, and although sex-specific reporting is progressing, it has historically been deficient. ACL injuries, prevention techniques, and ACL reconstruction require further research to maximize the health potential of at-risk female athletes.


2021 ◽  
Author(s):  
Yasuhiko Chikami ◽  
Miki Okuno ◽  
Atsushi Toyoda ◽  
Takehiko Itoh ◽  
Teruyuki Niimi

AbstractGain of alternative splicing gives rise to functional diversity in proteins and underlies the complexity and diversity of biological aspects. However, it is still not fully understood how alternatively spliced genes develop the functional novelty. To this end, we infer the evolutionary history of the doublesex gene, the key transcriptional factor in the sexual differentiation of arthropods. doublesex is controlled by sex-specific splicing and promotes both male and female differentiation in some holometabolan insects. In contrast, doublesex promotes only male differentiation in some hemimetabolan insects. Here, we investigate ancestral states of doublesex using Thermobia domestica belonging to Zygentoma, the sister group of winged insects. We find that doublesex of T. domestica expresses sex-specific isoforms but is only necessary for male differentiation of sexual morphology. This result ensures the hypothesis that doublesex was initially only used to promote male differentiation during insect evolution. However, T. domestica doublesex has a short female-specific region and upregulates the expression of vitellogenin homologs in females, suggesting that doublesex may have already controlled some aspects of feminization in the common ancestor of winged insects. Reconstruction of the ancestral sequence and prediction of the protein structure show that the female-specific isoform of doublesex has a long C-terminal disordered region in holometabolan insects, but not in non-holometabolan species. We propose that doublesex acquired a female-specific isoform and then underwent a change in the protein motif structure, which became essential for female differentiation in sexual dimorphisms.


2021 ◽  
Author(s):  
Madlen Merten ◽  
Johannes F.W. Greiner ◽  
Tarek Niemann ◽  
Meike Grosse Venhaus ◽  
Daniel Kronenberg ◽  
...  

Female sex is increasingly associated to a loss of bone mass during aging and an increased risk for fractures developing nonunion. Hormonal factors and cell-intrinsic mechanisms are suggested to drive these sexual dimorphisms, although underlying molecular mechanisms are still a matter of debate. Here, we observed a decreased capacity of calvarial bone recovery in female rats and a profound sexually dimorphic osteogenic differentiation human adult neural crest-derived stem cells (NCSCs). Next to an elevated expression of pro-osteogenic regulators, global trancriptomics revealed Lysine Demethylase 5D (KDM5D) to be highly upregulated in differentiating male NCSCs. Loss of function by siRNA or pharmacological inhibition of KDM5D significantly reduced the osteogenic differentiation capacity of male NCSCs. In summary, we demonstrate craniofacial osteogenic differentiation to be sexually dimorphic with the expression of KDM5D as a prerequisite for accelerated male osteogenic differentiation, emphasizing the analysis of sex-specific differences as a crucial parameter for treating bone defects.


2021 ◽  
Vol 12 ◽  
Author(s):  
Marie Lipoldová ◽  
Peter Demant

Inflammation is an integral part of defense against most infectious diseases. These pathogen-induced immune responses are in very many instances strongly influenced by host’s sex. As a consequence, sexual dimorphisms were observed in susceptibility to many infectious diseases. They are pathogen dose-dependent, and their outcomes depend on pathogen and even on its species or subspecies. Sex may differentially affect pathology of various organs and its influence is modified by interaction of host’s hormonal status and genotype: sex chromosomes X and Y, as well as autosomal genes. In this Mini Review we summarize the major influences of sex in human infections and subsequently focus on 22 autosomal genes/loci that modify in a sex-dependent way the response to infectious diseases in mouse models. These genes have been observed to influence susceptibility to viruses, bacteria, parasites, fungi and worms. Some sex-dependent genes/loci affect susceptibility only in females or only in males, affect both sexes, but have stronger effect in one sex; still other genes were shown to affect the disease in both sexes, but with opposite direction of effect in females and males. The understanding of mechanisms of sex-dependent differences in the course of infectious diseases may be relevant for their personalized management.


2021 ◽  
Vol 37 (1) ◽  
pp. 519-547
Author(s):  
Stephen F. Goodwin ◽  
Oliver Hobert

Male and female brains display anatomical and functional differences. Such differences are observed in species across the animal kingdom, including humans, but have been particularly well-studied in two classic animal model systems, the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans. Here we summarize recent advances in understanding how the worm and fly brain acquire sexually dimorphic features during development. We highlight the advantages of each system, illustrating how the precise anatomical delineation of sexual dimorphisms in worms has enabled recent analysis into how these dimorphisms become specified during development, and how focusing on sexually dimorphic neurons in the fly has enabled an increasingly detailed understanding of sex-specific behaviors.


Author(s):  
Diana L. Torres-Pinzon ◽  
Donna L. Ralph ◽  
Luciana C. Veiras ◽  
Alicia A. McDonough

Kidneys continuously filter an enormous amount of sodium and adapt kidney Na+ reabsorption to match Na+ intake to maintain circulatory volume and electrolyte homeostasis. Males (M) respond to high salt (HS) diet by translocating proximal tubule Na+/H+ exchanger 3 (NHE3) to the base of the microvilli, reducing activated forms of the distal NaCl cotransporter (NCC) and epithelial Na+ channel (ENaC). Males and females (M, F) on normal salt (NS) diets present sex-specific profiles of "transporters" (co-transporters, channels, pumps and claudins) along the nephron, e.g., F exhibit 40% lower NHE3 and 200% higher NCC abundance vs. M. We tested the hypothesis that adaptations to HS diet along the nephron will, likewise, exhibit sexual dimorphisms. C57BL/6J mice were fed 15 d with 4% NaCl diet (HS) vs. 0.26% NaCl diet (NS). On HS, M and F exhibited normal plasma [Na+] and [K+], and similar urine volume, Na+, K+, and osmolal excretion rates normalized to body weight. In F, like M, HS lowered abundance of distal NCC, phosphorylated NCC, and cleaved (activated) forms of ENaC. The adaptations associated with achieving electrolyte homeostasis exhibit sex-dependent and independent mechanisms: Sex differences in baseline "transporters" abundance persist during HS diet, yet the fold changes during HS diet (normalized to NS) are similar along the distal nephron and collecting duct. Sex dependent differences observed along the proximal tubule during HS show that female kidneys adapt differently from patterns reported in males yet achieve and maintain fluid and electrolyte homeostasis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ralf Britz ◽  
Kevin W. Conway ◽  
Lukas Rüber

AbstractThe four described species of Danionella are tiny, transparent fishes that mature at sizes between 10–15 mm, and represent some of the most extreme cases of vertebrate progenesis known to date. The miniature adult size and larval appearance of Danionella, combined with a diverse behavioral repertoire linked to sound production by males, have established Danionella as an important model for neurophysiological studies. The external similarity between the different species of Danionella has offered an important challenge to taxonomic identification using traditional external characters, leading to confusion over the identity of the model species. Using combined morphological and molecular taxonomic approaches, we show here that the most extensively studied species of Danionella is not D. translucida, but represents an undescribed species, D. cerebrum n. sp. that is externally almost identical to D. translucida, but differs trenchantly in several internal characters. Molecular analyses confirm the distinctiveness of D. cerebrum and D. translucida and suggest that the two species are not even sister taxa. Analysis of the evolution of sexual dimorphisms associated with the Weberian apparatus reveals significant increases in complexity from the simpler condition found in D. dracula, to most complex conditions in D. cerebrum, D. mirifica and D. translucida.


Sign in / Sign up

Export Citation Format

Share Document