Recent progress in larval settlement and metamorphosis: closing the gaps between molecular biology and ecology

1990 ◽  
Vol 37 (12) ◽  
pp. 1122
Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 435
Author(s):  
Makoto Ujike ◽  
Fumihiro Taguchi

Torovirus (ToV) has recently been classified into the new family Tobaniviridae, although it belonged to the Coronavirus (CoV) family historically. ToVs are associated with enteric diseases in animals and humans. In contrast to CoVs, which are recognised as pathogens of veterinary and medical importance, little attention has been paid to ToVs because their infections are usually asymptomatic or not severe; for a long time, only one equine ToV could be propagated in cultured cells. However, bovine ToVs, which predominantly cause diarrhoea in calves, have been detected worldwide, leading to economic losses. Porcine ToVs have also spread globally; although they have not caused serious economic losses, coinfections with other pathogens can exacerbate their symptoms. In addition, frequent inter- or intra-recombination among ToVs can increase pathogenesis or unpredicted host adaptation. These findings have highlighted the importance of ToVs as pathogens and the need for basic ToV research. Here, we review recent progress in the study of ToV molecular biology including reverse genetics, focusing on the similarities and differences between ToVs and CoVs.


1995 ◽  
Vol 7 (4) ◽  
pp. 713 ◽  
Author(s):  
P Koopman

SRY is the gene that initiates the genetic cascade leading to testis development in mammals. Since its discovery in 1990 and the direct demonstration of its male-determining role in transgenic mice, attention has turned to understanding the biochemical mode of action of the SRY gene product, and to the identification of other genes in the sex-determining pathway. Recent progress in these efforts is summarized in this review.


2020 ◽  
Vol 97 (1) ◽  
Author(s):  
Fangfang Yang ◽  
Jiahao Mo ◽  
Zhangliang Wei ◽  
Lijuan Long

ABSTRACT Calcified macroalgae play an important role in the settlement and metamorphosis of invertebrate larvae in coral reef ecosystems. However, little is known about the algal-associated bacterial communities and their effects on larval settlement. In this study, the responses of larvae of the coral Pocillopora damicornis to calcified algae (Porolithon onkodes, Halimeda cylindracea, Halimeda opuntia and Amphiroa fragilissima) were evaluated. The results revealed that Por. onkodes and H. cylindracea significantly enhanced the rates of settlement and metamorphosis, whereas fewer larvae settled on Am. fragilissima and H. opuntia. Amplicon pyrosequencing of the V3–V4 region of 16S rDNA was applied to investigate the relationship between algal bacterial community and larval settlement. Principal coordinates analysis demonstrated that the bacterial community composition of H. opuntia was more similar to that of Am. fragilissima, but clearly distinct from those of H. cylindracea and Por. onkodes. Furthermore, the relative abundances of bacteria were highly diverse among different algae. H. opuntia had higher percentages of Thalassobius, Pelagibius and SM1A02, whereas the abundances of Mycoplasma and Suttonella were significantly higher in H. cylindracea than other algae. Our results showed that larval settlement/metamorphosis was strongly correlated with the bacterial community composition and with the relative abundance of a few operational taxonomic units.


2019 ◽  
Vol 85 (16) ◽  
Author(s):  
Jian He ◽  
Qi Dai ◽  
Yuxuan Qi ◽  
Pei Su ◽  
Miaoqin Huang ◽  
...  

ABSTRACTMarine bacterial biofilms have long been recognized as potential inducers of larval settlement and metamorphosis in marine invertebrates, but few chemical cues from bacteria have been identified. Here, we show that larval settlement and metamorphosis of an invasive fouling mussel,Mytilopsis sallei, could be induced by biofilms of bacteria isolated from its adult shells and other substrates from the natural environment. One of the strains isolated,Vibrio owensiiMS-9, showed strong inducing activity which was attributed to the release of a mixture of nucleobases including uracil, thymine, xanthine, hypoxanthine, and guanine into seawater. In particular, the synergistic effect of hypoxanthine and guanine was sufficient for the inducing activity ofV. owensiiMS-9. The presence of two or three other nucleobases could enhance, to some extent, the activity of the mixture of hypoxanthine and guanine. Furthermore, we determined that bacteria producing higher concentrations of nucleobases were more likely to induce larval settlement and metamorphosis ofM. salleithan were bacteria producing lower concentrations of nucleobases. The present study demonstrates that bacterial nucleobases play an important role in larval settlement and metamorphosis of marine invertebrates. This provides new insights into our understanding of the role of environmental bacteria in the colonization and aggregation of invasive fouling organisms and of the metabolites used as chemical mediators in cross-kingdom communication within aquatic systems.IMPORTANCEInvasive species are an increasingly serious problem globally. In aquatic ecosystems, invasive dreissenid mussels are well-known ecological and economic pests because they appear to effortlessly invade new environments and foul submerged structures with high-density aggregations. To efficiently control exotic mussel recruitment and colonization, the need to investigate the mechanisms of substrate selection for larval settlement and metamorphosis is apparent. Our work is one of very few to experimentally demonstrate that compounds produced by environmental bacteria play an important role in larval settlement and metamorphosis in marine invertebrates. Additionally, this study demonstrates that bacterial nucleobases can be used as chemical mediators in cross-kingdom communication within aquatic systems, which will enhance our understanding of how microbes induce larval settlement and metamorphosis of dreissenid mussels, and it furthermore may allow the development of new methods for application in antifouling.


Sign in / Sign up

Export Citation Format

Share Document