Calcified macroalgae and their bacterial community in relation to larval settlement and metamorphosis of reef-building coral Pocillopora damicornis

2020 ◽  
Vol 97 (1) ◽  
Author(s):  
Fangfang Yang ◽  
Jiahao Mo ◽  
Zhangliang Wei ◽  
Lijuan Long

ABSTRACT Calcified macroalgae play an important role in the settlement and metamorphosis of invertebrate larvae in coral reef ecosystems. However, little is known about the algal-associated bacterial communities and their effects on larval settlement. In this study, the responses of larvae of the coral Pocillopora damicornis to calcified algae (Porolithon onkodes, Halimeda cylindracea, Halimeda opuntia and Amphiroa fragilissima) were evaluated. The results revealed that Por. onkodes and H. cylindracea significantly enhanced the rates of settlement and metamorphosis, whereas fewer larvae settled on Am. fragilissima and H. opuntia. Amplicon pyrosequencing of the V3–V4 region of 16S rDNA was applied to investigate the relationship between algal bacterial community and larval settlement. Principal coordinates analysis demonstrated that the bacterial community composition of H. opuntia was more similar to that of Am. fragilissima, but clearly distinct from those of H. cylindracea and Por. onkodes. Furthermore, the relative abundances of bacteria were highly diverse among different algae. H. opuntia had higher percentages of Thalassobius, Pelagibius and SM1A02, whereas the abundances of Mycoplasma and Suttonella were significantly higher in H. cylindracea than other algae. Our results showed that larval settlement/metamorphosis was strongly correlated with the bacterial community composition and with the relative abundance of a few operational taxonomic units.

2021 ◽  
Vol 12 ◽  
Author(s):  
Fangfang Yang ◽  
Zhiliang Xiao ◽  
Zhangliang Wei ◽  
Lijuan Long

Crustose coralline algae (CCA) play vital roles in producing and stabilizing reef structures and inducing the settlement and metamorphosis of invertebrate larvae in coral reef ecosystems. However, little is known about the bacterial communities associated with healthy and bleached CCA and their interactions with coral larval settlement. We collected samples of healthy, middle semi-bleached, and bleached CCA Porolithon onkodes from Sanya Bay in the South China Sea and investigated their influences on the larval settlement and metamorphosis of the reef-building coral Pocillopora damicornis. The larval settlement/metamorphosis rates all exceeded 70% when exposed to healthy, middle semi-bleached, and bleached algae. Furthermore, the compositions of bacterial community using amplicon pyrosequencing of the V3–V4 region of 16S rRNA were investigated. There were no obvious changes in bacterial community structure among healthy, middle semi-bleached, and bleached algae. Alphaproteobacteria, Bacteroidetes, and Gammaproteobacteria were dominant in all samples, which may contribute to coral larval settlement. However, the relative abundances of several bacterial communities varied among groups. The relative abundances of Mesoflavibacter, Ruegeria, Nautella, and Alteromonas in bleached samples were more than double those in the healthy samples, whereas Fodinicurvata and unclassified Rhodobacteraceae were significantly lower in the bleached samples. Additionally, others at the genus level increased significantly from 8.5% in the healthy samples to 22.93% in the bleached samples, which may be related to algal bleaching. These results revealed that the microbial community structure associated with P. onkodes generally displayed a degree of stability. Furthermore, bleached alga was still able to induce larval settlement and metamorphosis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Stokes S. Baker ◽  
Mohamed S. Alhassan ◽  
Kristian Z. Asenov ◽  
Joyce J. Choi ◽  
Griffin E. Craig ◽  
...  

Course-based undergraduate research experience (CURE) courses incorporate high-impact pedagogies that have been shown to increase undergraduate retention among underrepresented minorities and women. As part of the Building Infrastructure Leading to Diversity program at the University of Detroit Mercy, a CURE metagenomics course was established in the winter of 2019. Students investigated the bacterial community composition in a eutrophic cove in Lake Saint Clair (Harrison Township, MI, United States) from water samples taken in the summer and winter. The students created 16S rRNA libraries that were sequenced using next-generation sequencing technology. They used a public web-based supercomputing resource to process their raw sequencing data and web-based tools to perform advanced statistical analysis. The students discovered that the most common operational taxonomic unit, representing 31% of the prokaryotic sequences in both summer and winter samples, corresponded to an organism that belongs to a previously unidentified phylum. This result showed the students the power of metagenomics because the approach was able to detect unclassified organisms. Principal Coordinates Analysis of Bray–Curtis dissimilarity index data showed that the winter community was distinct from the summer community [Analysis of Similarities (ANOSIM) r = 0.59829, n = 18, and p < 0.001]. Dendrograms based on hierarchically clustered Pearson correlation coefficients of phyla were divided into a winter clade and a summer clade. The conclusion is that the winter bacterial population was fundamentally different from the summer population, even though the samples were taken from the same locations in a protected cove. Because of the small class sizes, qualitative as well as statistical methods were used to evaluate the course’s impact on student attitudes. Results from the Laboratory Course Assessment Survey showed that most of the respondents felt they were contributing to scientific knowledge and the course fostered student collaboration. The majority of respondents agreed or strongly agreed that the course incorporated iteration aspects of scientific investigations, such as repeating procedures to fix problems. In summary, the metagenomics CURE course was able to add to scientific knowledge and allowed students to participate in authentic research.


Data ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 27
Author(s):  
Hyo-Ryeon Kim ◽  
Jae-Hyun Lim ◽  
Ju-Hyoung Kim ◽  
Il-Nam Kim

Marine bacteria, which are known as key drivers for marine biogeochemical cycles and Earth’s climate system, are mainly responsible for the decomposition of organic matter and production of climate-relevant gases (i.e., CO₂, N₂O, and CH₄). However, research is still required to fully understand the correlation between environmental variables and bacteria community composition. Marine bacteria living in the Marian Cove, where the inflow of freshwater has been rapidly increasing due to substantial glacial retreat, must be undergoing significant environmental changes. During the summer of 2018, we conducted a hydrographic survey to collect environmental variables and bacterial community composition data at three different layers (i.e., the seawater surface, middle, and bottom layers) from 15 stations. Of all the bacterial data, 17 different phylum level bacteria and 21 different class level bacteria were found and Proteobacteria occupy 50.3% at phylum level following Bacteroidetes. Gammaproteobacteria and Alphaproteobacteria, which belong to Proteobacteria, are the highest proportion at the class level. Gammaproteobacteria showed the highest relative abundance in all three seawater layers. The collection of environmental variables and bacterial composition data contributes to improving our understanding of the significant relationships between marine Antarctic regions and marine bacteria that lives in the Antarctic.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Danijela Šantić ◽  
Kasia Piwosz ◽  
Frano Matić ◽  
Ana Vrdoljak Tomaš ◽  
Jasna Arapov ◽  
...  

AbstractBacteria are an active and diverse component of pelagic communities. The identification of main factors governing microbial diversity and spatial distribution requires advanced mathematical analyses. Here, the bacterial community composition was analysed, along with a depth profile, in the open Adriatic Sea using amplicon sequencing of bacterial 16S rRNA and the Neural gas algorithm. The performed analysis classified the sample into four best matching units representing heterogenic patterns of the bacterial community composition. The observed parameters were more differentiated by depth than by area, with temperature and identified salinity as important environmental variables. The highest diversity was observed at the deep chlorophyll maximum, while bacterial abundance and production peaked in the upper layers. The most of the identified genera belonged to Proteobacteria, with uncultured AEGEAN-169 and SAR116 lineages being dominant Alphaproteobacteria, and OM60 (NOR5) and SAR86 being dominant Gammaproteobacteria. Marine Synechococcus and Cyanobium-related species were predominant in the shallow layer, while Prochlorococcus MIT 9313 formed a higher portion below 50 m depth. Bacteroidota were represented mostly by uncultured lineages (NS4, NS5 and NS9 marine lineages). In contrast, Actinobacteriota were dominated by a candidatus genus Ca. Actinomarina. A large contribution of Nitrospinae was evident at the deepest investigated layer. Our results document that neural network analysis of environmental data may provide a novel insight into factors affecting picoplankton in the open sea environment.


2021 ◽  
Vol 131 ◽  
pp. 31-40
Author(s):  
Yuanyuan Bao ◽  
Youzhi Feng ◽  
Chongwen Qiu ◽  
Jianwei Zhang ◽  
Yiming Wang ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
pp. 157-172
Author(s):  
Shankar G. Shanmugam ◽  
Normie W. Buehring ◽  
Jon D. Prevost ◽  
William L. Kingery

Our understanding on the effects of tillage intensity on the soil microbial community structure and composition in crop production systems are limited. This study evaluated the soil microbial community composition and diversity under different tillage management systems in an effort to identify management practices that effectively support sustainable agriculture. We report results from a three-year study to determine the effects on changes in soil microbial diversity and composition from four tillage intensity treatments and two residue management treatments in a corn-soybean production system using Illumina high-throughput sequencing of 16S rRNA genes. Soil samples were collected from tillage treatments at locations in the Southern Coastal Plain (Verona, Mississippi, USA) and Southern Mississippi River Alluvium (Stoneville, Mississippi, USA) for soil analysis and bacterial community characterization. Our results indicated that different tillage intensity treatments differentially changed the relative abundances of bacterial phyla. The Mantel test of correlations indicated that differences among bacterial community composition were significantly influenced by tillage regime (rM = 0.39, p ≤ 0.0001). Simpson’s reciprocal diversity index indicated greater bacterial diversity with reduction in tillage intensity for each year and study location. For both study sites, differences in tillage intensity had significant influence on the abundance of Proteobacteria. The shift in the soil bacterial community composition under different tillage systems was strongly correlated to changes in labile carbon pool in the system and how it affected the microbial metabolism. This study indicates that soil management through tillage intensity regime had a profound influence on diversity and composition of soil bacterial communities in a corn-soybean production system.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Alison C. Bartenslager ◽  
Nirosh D. Althuge ◽  
John Dustin Loy ◽  
Matthew M. Hille ◽  
Matthew L. Spangler ◽  
...  

Abstract Background Infectious Bovine Keratoconjunctivitis (IBK), commonly known as pinkeye, is one of the most significant diseases of beef cattle. As such, IBK costs the US beef industry at least 150 million annually. However, strategies to prevent IBK are limited, with most cases resulting in treatment with antibiotics once the disease has developed. Longitudinal studies evaluating establishment of the ocular microbiota may identify critical risk periods for IBK outbreaks or changes in the microbiota that may predispose animals to IBK. Results In an attempt to characterize the establishment and colonization patterns of the bovine ocular microbiota, we conducted a longitudinal study consisting of 227 calves and evaluated the microbiota composition over time using amplicon sequence variants (ASVs) based on 16S rRNA sequencing data and culture-based approaches. Beef calves on trial consisted of both male (intact) and females. Breeds were composed of purebred Angus and composites with varying percentages of Simmental, Angus, and Red Angus breeds. Average age at the start of the trial was 65 days ±15.02 and all calves remained nursing on their dam until weaning (day 139 of the study). The trial consisted of 139 days with four sampling time points on day 0, 21, 41, and 139. The experimental population received three different vaccination treatments (autogenous, commercial (both inactivated bacteria), and adjuvant placebo), to assess the effectiveness of different vaccines for IBK prevention. A significant change in bacterial community composition was observed across time periods sampled compared to the baseline (p < 0.001). However, no treatment effect of vaccine was detected within the ocular bacterial community. The bacterial community composition with the greatest time span between sampling time periods (98d span) was most similar to the baseline sample collected, suggesting re-establishment of the ocular microbiota to baseline levels over time after perturbation. The effect of IgA levels on the microbial community was investigated in a subset of cattle within the study. However, no significant effect of IgA was observed. Significant changes in the ocular microbiota were identified when comparing communities pre- and post-clinical signs of IBK. Additionally, dynamic changes in opportunistic pathogens Moraxella spp. were observed and confirmed using culture based methods. Conclusions Our results indicate that the bovine ocular microbiota is well represented by opportunistic pathogens such as Moraxella and Mycoplasma. Furthermore, this study characterizes the diversity of the ocular microbiota in calves and demonstrates the plasticity of the ocular microbiota to change. Additionally, we demonstrate the ocular microbiome in calves is similar between the eyes and the perturbation of one eye results in similar changes in the other eye. We also demonstrate the bovine ocular microbiota is slow to recover post perturbation and as a result provide opportunistic pathogens a chance to establish within the eye leading to IBK and other diseases. Characterizing the dynamic nature of the ocular microbiota provides novel opportunities to develop potential probiotic intervention to reduce IBK outbreaks in cattle.


2021 ◽  
Vol 99 (4) ◽  
Author(s):  
Raghavendra G Amachawadi ◽  
Wesley A Tom ◽  
Michael P Hays ◽  
Samodha C Fernando ◽  
Philip R Hardwidge ◽  
...  

Abstract Liver abscesses in feedlot cattle are polymicrobial infections. Culture-based studies have identified Fusobacterium necrophorum as the primary causative agent, but a number of other bacterial species are frequently isolated. The incidence of liver abscesses is highly variable and is affected by a number of factors, including cattle type. Holstein steers raised for beef production have a higher incidence than crossbred feedlot cattle. Tylosin is the commonly used antimicrobial feed additive to reduce the incidence of liver abscesses. The objective of this study was to utilize 16S ribosomal RNA amplicon sequence analyses to analyze the bacterial community composition of purulent material of liver abscesses of crossbred cattle (n = 24) and Holstein steers (n = 24), each fed finishing diet with or without tylosin. DNA was extracted and the V3 and V4 regions of the 16S rRNA gene were amplified, sequenced, and analyzed. The minimum, mean, and maximum sequence reads per sample were 996, 177,070, and 877,770, respectively, across all the liver abscess samples. Sequence analyses identified 5 phyla, 14 families, 98 genera, and 102 amplicon sequence variants (ASV) in the 4 treatment groups. The dominant phyla identified were Fusobacteria (52% of total reads) and Proteobacteria (33%). Of the top 25 genera identified, 17 genera were Gram negative and 8 were Gram positive. The top 3 genera, which accounted for 75% of the total reads, in the order of abundance, were Fusobacterium, Pseudomonas, and Bacteroides. The relative abundance, expressed as percent of total reads, of phyla, family, and genera did not differ (P &gt; 0.05) between the 4 treatment groups. Generic richness and evenness, determined by Shannon–Weiner and Simpson’s diversity indices, respectively, did not differ between the groups. The UniFrac distance matrices data revealed no clustering of the ASV indicating variance between the samples within each treatment group. Co-occurrence network analysis at the genus level indicated a strong association of Fusobacterium with 15 other genera, and not all of them have been previously isolated from liver abscesses. In conclusion, the culture-independent method identified the bacterial composition of liver abscesses as predominantly Gram negative and Fusobacterium as the dominant genus, followed by Pseudomonas. The bacterial community composition did not differ between crossbred and Holstein steers fed finishing diets with or without tylosin.


Sign in / Sign up

Export Citation Format

Share Document