Role of the Crumbs complex in the regulation of junction formation in Drosophila and mammalian epithelial cells

2002 ◽  
Vol 94 (6) ◽  
pp. 305-313 ◽  
Author(s):  
Emmanuelle Médina ◽  
Céline Lemmers ◽  
Lydie Lane-Guermonprez ◽  
André Bivic
Genetics ◽  
2020 ◽  
Vol 214 (4) ◽  
pp. 941-959 ◽  
Author(s):  
José G. Montoyo-Rosario ◽  
Stephen T. Armenti ◽  
Yuliya Zilberman ◽  
Jeremy Nance

Epithelial cells form intercellular junctions to strengthen cell–cell adhesion and limit diffusion, allowing epithelia to function as dynamic tissues and barriers separating internal and external environments. Junctions form as epithelial cells differentiate; clusters of junction proteins first concentrate apically, then mature into continuous junctional belts that encircle and connect each cell. In mammals and Drosophila, atypical protein kinase C (aPKC) is required for junction maturation, although how it contributes to this process is poorly understood. A role for the Caenorhabditis elegans aPKC homolog PKC-3 in junction formation has not been described previously. Here, we show that PKC-3 is essential for junction maturation as epithelia first differentiate. Using a temperature-sensitive allele of pkc-3 that causes junction breaks in the spermatheca and leads to sterility, we identify intragenic and extragenic suppressors that render pkc-3 mutants fertile. Intragenic suppressors include an unanticipated stop-to-stop mutation in the pkc-3 gene, providing evidence for the importance of stop codon identity in gene activity. One extragenic pkc-3 suppressor is a loss-of-function allele of the lethal(2) giant larvae homolog lgl-1, which antagonizes aPKC within epithelia of Drosophila and mammals, but was not known previously to function in C. elegans epithelia. Finally, two extragenic suppressors are loss-of-function alleles of sups-1—a previously uncharacterized gene. We show that SUPS-1 is an apical extracellular matrix protein expressed in epidermal cells, suggesting that it nonautonomously regulates junction formation in the spermatheca. These findings establish a foundation for dissecting the role of PKC-3 and interacting genes in epithelial junction maturation.


2021 ◽  
Author(s):  
Victoria G Castiglioni ◽  
Joao J Ramalho ◽  
Jason R Kroll ◽  
Riccardo Stucchi ◽  
Hanna van Beuzekom ◽  
...  

The apical domain of epithelial cells can acquire a diverse array of morphologies and functions, which is critical for the function of epithelial tissues. The Crumbs proteins are evolutionary conserved transmembrane proteins with essential roles in promoting apical domain formation in epithelial cells. The short intracellular tail of Crumbs proteins interacts with a variety of proteins, including the scaffolding protein Pals1 (protein associated with LIN7, Stardust in Drosophila). Pals1 in turn binds to a second scaffolding protein termed PATJ (Pals1-associated tight junction protein), to form the core Crumbs/ Pals1/PATJ Crumbs complex. While essential roles in epithelial organization have been shown for Crumbs proteins in Drosophila and mammalian systems, the three Caenorhabditis elegans crumbs genes are dispensable for epithelial polarization and animal development. Moreover, the presence and functioning of orthologs of Pals1 and PATJ has not been investigated. Here, we identify MAGU-2 and MPZ-1 as the C. elegans orthologs of Pals1 and PATJ, respectively. We show that MAGU-2 interacts with all three Crumbs proteins as well as MPZ-1, and localizes to the apical membrane domain in a Crumbs-dependent fashion. Similar to crumbs mutants, a magu-2 null mutant shows no developmental or epithelial polarity defects. Finally, we show that overexpression of the Crumbs proteins EAT-20 or CRB-3 in the C. elegans intestine can lead to apical membrane expansion. Our results shed light into the composition of the C. elegans Crumbs complex and indicate that the role of Crumbs proteins in promoting apical domain identity is conserved.


Author(s):  
W.T. Gunning ◽  
M.R. Marino ◽  
M.S. Babcock ◽  
G.D. Stoner

The role of calcium in modulating cellular replication and differentiation has been described for various cell types. In the present study, the effects of Ca++ on the growth and differentiation of cultured rat esophageal epithelial cells was investigated.Epithelial cells were isolated from esophagi taken from 8 week-old male CDF rats by the enzymatic dissociation method of Kaighn. The cells were cultured in PFMR-4 medium supplemented with 0.25 mg/ml dialyzed fetal bovine serum, 5 ng/ml epidermal growth factor, 10-6 M hydrocortisone 10-6 M phosphoethanolamine, 10-6 M ethanolamine, 5 pg/ml insulin, 5 ng/ml transferrin, 10 ng/ml cholera toxin and 50 ng/ml garamycin at 36.5°C in a humidified atmosphere of 3% CO2 in air. At weekly intervals, the cells were subcultured with a solution containing 1% polyvinylpyrrolidone, 0.01% EGTA, and 0.05% trypsin. After various passages, the replication rate of the cells in PFMR-4 medium containing from 10-6 M to 10-3 M Ca++ was determined using a clonal growth assay.


Pneumologie ◽  
2011 ◽  
Vol 65 (12) ◽  
Author(s):  
S Rim ◽  
S Jahan ◽  
G John ◽  
K Kohse ◽  
A Bohla ◽  
...  

2015 ◽  
Vol 13 (6) ◽  
pp. 479-489
Author(s):  
Amelie Saint Jean ◽  
Thomas Bourlet ◽  
Olivier Delezay
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document