crumbs complex
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 8)

H-INDEX

13
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Stine K Morthorst ◽  
Camilla Nielsen ◽  
Pietro Farinelli ◽  
Zeinab Anvarian ◽  
Christina B. R. Rasmussen ◽  
...  

The kinesin-3 motor KIF13B functions in endocytosis, vesicle transport, and regulation of ciliary length and signaling. Direct binding of the membrane-associated guanylate kinase (MAGUK) DLG1 to KIF13Bs MAGUK-binding stalk (MBS) domain relieves motor autoinhibition and promotes microtubule plus end-directed cargo transport. Here we characterize Angiomotin isoform 2 (Ap80) as a novel KIF13B interactor that promotes binding of another MAGUK, the polarity protein and Crumbs complex component PALS1, to KIF13B. Live cell imaging analysis indicated that Ap80 is concentrated at the base of primary cilia and recruits PALS1 to this site, but is not itself a cargo of KIF13B. Consistent with a ciliary function for Ap80, its depletion led to elongated primary cilia and altered IGF-1 signaling in cultured mammalian cells. Our results suggest that Ap80 may specifically activate KIF13B cargo binding at the base of primary cilia to regulate ciliary length and signaling.


2021 ◽  
Author(s):  
Victoria G Castiglioni ◽  
Joao J Ramalho ◽  
Jason R Kroll ◽  
Riccardo Stucchi ◽  
Hanna van Beuzekom ◽  
...  

The apical domain of epithelial cells can acquire a diverse array of morphologies and functions, which is critical for the function of epithelial tissues. The Crumbs proteins are evolutionary conserved transmembrane proteins with essential roles in promoting apical domain formation in epithelial cells. The short intracellular tail of Crumbs proteins interacts with a variety of proteins, including the scaffolding protein Pals1 (protein associated with LIN7, Stardust in Drosophila). Pals1 in turn binds to a second scaffolding protein termed PATJ (Pals1-associated tight junction protein), to form the core Crumbs/ Pals1/PATJ Crumbs complex. While essential roles in epithelial organization have been shown for Crumbs proteins in Drosophila and mammalian systems, the three Caenorhabditis elegans crumbs genes are dispensable for epithelial polarization and animal development. Moreover, the presence and functioning of orthologs of Pals1 and PATJ has not been investigated. Here, we identify MAGU-2 and MPZ-1 as the C. elegans orthologs of Pals1 and PATJ, respectively. We show that MAGU-2 interacts with all three Crumbs proteins as well as MPZ-1, and localizes to the apical membrane domain in a Crumbs-dependent fashion. Similar to crumbs mutants, a magu-2 null mutant shows no developmental or epithelial polarity defects. Finally, we show that overexpression of the Crumbs proteins EAT-20 or CRB-3 in the C. elegans intestine can lead to apical membrane expansion. Our results shed light into the composition of the C. elegans Crumbs complex and indicate that the role of Crumbs proteins in promoting apical domain identity is conserved.


Development ◽  
2020 ◽  
Vol 147 (22) ◽  
pp. dev184457
Author(s):  
Yumei Hao ◽  
Yao Zhou ◽  
Yinhui Yu ◽  
Mingjie Zheng ◽  
Kechao Weng ◽  
...  

ABSTRACTAdherens junction remodeling regulated by apical polarity proteins constitutes a major driving force for tissue morphogenesis, although the precise mechanism remains inconclusive. Here, we report that, in zebrafish, the Crumbs complex component MPP5a interacts with small GTPase Rab11 in Golgi to transport cadherin and Crumbs components synergistically to the apical domain, thus establishing apical epithelial polarity and adherens junctions. In contrast, Par complex recruited by MPP5a is incapable of interacting with Rab11 but might assemble cytoskeleton to facilitate cadherin exocytosis. In accordance, dysfunction of MPP5a induces an invasive migration of epithelial cells. This adherens junction remodeling pattern is frequently observed in zebrafish lens epithelial cells and neuroepithelial cells. The data identify an unrecognized MPP5a-Rab11 complex and describe its essential role in guiding apical polarization and zonula adherens formation in epithelial cells.


2020 ◽  
Vol 219 (11) ◽  
Author(s):  
Arnaud Ambrosini ◽  
Katja Röper

In the Drosophila larval optic lobe, the generation of neural stem cells involves an epithelial-to-mesenchymal–like transition of a continuous stripe of cells that sweeps across the neuroepithelium, but the dynamics at cell and tissue level were unknown until now. In this issue, Shard et al. (2020. J. Cell Biol.https://doi.org/10.1083/jcb.202005035) identify that Neuralized controls a partial epithelial-to-mesenchymal transition through regulation of the apical Crumbs complex and through the coordination of cell behaviors such as apical constriction and cell alignment.


2020 ◽  
Vol 219 (11) ◽  
Author(s):  
Chloé Shard ◽  
Juan Luna-Escalante ◽  
François Schweisguth

Many tissues are produced by specialized progenitor cells emanating from epithelia via epithelial-to-mesenchymal transition (EMT). Most studies have so far focused on EMT involving single or isolated groups of cells. Here we describe an EMT-like process that requires tissue-level coordination. This EMT-like process occurs along a continuous front in the Drosophila optic lobe neuroepithelium to produce neural stem cells (NSCs). We find that emerging NSCs remain epithelial and apically constrict before dividing asymmetrically to produce neurons. Apical constriction is associated with contractile myosin pulses and involves RhoGEF3 and down-regulation of the Crumbs complex by the E3 ubiquitin ligase Neuralized. Anisotropy in Crumbs complex levels also results in accumulation of junctional myosin. Disrupting the regulation of Crumbs by Neuralized lowered junctional myosin and led to imprecision in the integration of emerging NSCs into the front. Thus, Neuralized promotes smooth progression of the differentiation front by coupling epithelium remodeling at the tissue level with NSC fate acquisition.


2020 ◽  
Vol 30 (14) ◽  
pp. 2791-2804.e6 ◽  
Author(s):  
Benedict Tan ◽  
Siti Maryam J.M. Yatim ◽  
Suat Peng ◽  
Jayantha Gunaratne ◽  
Walter Hunziker ◽  
...  

Genes ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 987 ◽  
Author(s):  
Peter M.J. Quinn ◽  
Jan Wijnholds

The Crumbs complex has prominent roles in the control of apical cell polarity, in the coupling of cell density sensing to downstream cell signaling pathways, and in regulating junctional structures and cell adhesion. The Crumbs complex acts as a conductor orchestrating multiple downstream signaling pathways in epithelial and neuronal tissue development. These pathways lead to the regulation of cell size, cell fate, cell self-renewal, proliferation, differentiation, migration, mitosis, and apoptosis. In retinogenesis, these are all pivotal processes with important roles for the Crumbs complex to maintain proper spatiotemporal cell processes. Loss of Crumbs function in the retina results in loss of the stratified appearance resulting in retinal degeneration and loss of visual function. In this review, we begin by discussing the physiology of vision. We continue by outlining the processes of retinogenesis and how well this is recapitulated between the human fetal retina and human embryonic stem cell (ESC) or induced pluripotent stem cell (iPSC)-derived retinal organoids. Additionally, we discuss the functionality of in utero and preterm human fetal retina and the current level of functionality as detected in human stem cell-derived organoids. We discuss the roles of apical-basal cell polarity in retinogenesis with a focus on Leber congenital amaurosis which leads to blindness shortly after birth. Finally, we discuss Crumbs homolog (CRB)-based gene augmentation.


2019 ◽  
Vol 218 (10) ◽  
pp. 3397-3414 ◽  
Author(s):  
Jordan T. Silver ◽  
Frederik Wirtz-Peitz ◽  
Sérgio Simões ◽  
Milena Pellikka ◽  
Dong Yan ◽  
...  

The spatio-temporal regulation of small Rho GTPases is crucial for the dynamic stability of epithelial tissues. However, how RhoGTPase activity is controlled during development remains largely unknown. To explore the regulation of Rho GTPases in vivo, we analyzed the Rho GTPase guanine nucleotide exchange factor (RhoGEF) Cysts, the Drosophila orthologue of mammalian p114RhoGEF, GEF-H1, p190RhoGEF, and AKAP-13. Loss of Cysts causes a phenotype that closely resembles the mutant phenotype of the apical polarity regulator Crumbs. This phenotype can be suppressed by the loss of basolateral polarity proteins, suggesting that Cysts is an integral component of the apical polarity protein network. We demonstrate that Cysts is recruited to the apico-lateral membrane through interactions with the Crumbs complex and Bazooka/Par3. Cysts activates Rho1 at adherens junctions and stabilizes junctional myosin. Junctional myosin depletion is similar in Cysts- and Crumbs-compromised embryos. Together, our findings indicate that Cysts is a downstream effector of the Crumbs complex and links apical polarity proteins to Rho1 and myosin activation at adherens junctions, supporting junctional integrity and epithelial polarity.


2017 ◽  
Author(s):  
Hassiba Belahbib ◽  
Emmanuelle Renard ◽  
Sébastien Santini ◽  
Cyril Jourda ◽  
Jean-Michel Claverie ◽  
...  

AbstractThe emergence of epithelia was the foundation of metazoan expansion. To investigate the early evolution of animal epithelia, we sequenced the genome and transcriptomes of two new sponge species to characterize epithelial markers such as the E-cadherin complex and the polarity complexes for all classes (Calcarea, Demospongiae, Hexactinellida, Homoscleromorpha) of sponges (phylum Porifera) and compare them with their homologs in Placozoa and in Ctenophora. We found that Placozoa and most sponges possess orthologs of all essential genes encoding proteins characteristic of bilaterian epithelial cells, as well as their conserved interaction domains. In stark contrast, we found that ctenophores lack several major polarity complex components such as the Crumbs complex and Scribble. Furthermore, the E-cadherin ctenophore ortholog exhibits a divergent cytoplasmic domain making it unlikely to interact with its canonical cytoplasmic partners. These unexpected findings challenge the current evolutionary paradigm on the emergence of epithelia.SIGNIFICANT STATEMENTEpithelial tissues are a hallmark of metazoans deeply linked to the evolution of the complex morphogenesis processes characterizing their development. However, studies on the epithelial features of non-bilaterians are still sparse and it remains unclear whether the last common metazoan ancestor possessed a fully functional epithelial toolkit or if it was acquired later during metazoan evolution. In this work, we demonstrate that if sponges have a well conserved and functionally predicted epithelial toolkit, Ctenophores have either divergent adhesion complexes or lack essential polarity complexes. Altogether, our results raise a doubt on the homology of protein complexes and structures involved in cell polarity and adhesive type junctions between Ctenophora and Bilateria epithelia.


Sign in / Sign up

Export Citation Format

Share Document