scholarly journals EXACT SOLITARY WAVE AND SOLITON SOLUTIONS OF THE GENERALIZED FIFTH ORDER KdV EQUATION

2001 ◽  
Vol 50 (3) ◽  
pp. 402
Author(s):  
LI ZHI-BIN ◽  
PAN SU-QI
2002 ◽  
Vol 22 (1) ◽  
pp. 138-144 ◽  
Author(s):  
Zhibin Li ◽  
Yinping Liu ◽  
Mingliang Wang

2020 ◽  
Vol 34 (07) ◽  
pp. 2050045 ◽  
Author(s):  
Naila Nasreen ◽  
Aly R. Seadawy ◽  
Dianchen Lu

The modified Kawahara equation also called Korteweg-de Vries (KdV) equation of fifth-order arises in shallow water wave and capillary gravity water waves. This study is based on the generalized Riccati equation mapping and modified the F-expansion methods. Several types of solitons such as Bright soliton, Dark-lump soliton, combined bright dark solitary waves, have been derived for the modified Kawahara equation. The obtained solutions have significant applications in applied physics and engineering. Moreover, stability of the problem is presented after being examined through linear stability analysis that justify that all solutions are stable. We also present some solution graphically in 3D and 2D that gives easy understanding about physical explanation of the modified Kawahara equation. The calculated work and achieved outcomes depict the power of the present methods. Furthermore, we can solve various other nonlinear problems with the help of simple and effective techniques.


2015 ◽  
Vol 70 (7) ◽  
pp. 559-566 ◽  
Author(s):  
Gao-Qing Meng ◽  
Yi-Tian Gao ◽  
Da-Wei Zuo ◽  
Yu-Jia Shen ◽  
Yu-Hao Sun ◽  
...  

AbstractKorteweg–de Vries (KdV)-type equations are used as approximate models governing weakly nonlinear long waves in fluids, where the first-order nonlinear and dispersive terms are retained and in balance. The retained second-order terms can result in the extended fifth-order KdV equation. Through the Darboux transformation (DT), multi-soliton solutions for the extended fifth-order KdV equation with coefficient constraints are constructed. Soliton propagation properties and interactions are studied: except for the velocity, the amplitude and width of the soliton are not influenced by the coefficient of the original equation; the amplitude, velocity, and wave shape of each soltion remain unchanged after the interaction. By virtue of the generalised DT and Taylor expansion of the solutions for the corresponding Lax pair, the first- and second-order rational solutions of the equation are obtained.


2019 ◽  
Vol 33 (22) ◽  
pp. 1950255 ◽  
Author(s):  
Wen-Tao Li ◽  
Zhao Zhang ◽  
Xiang-Yu Yang ◽  
Biao Li

In this paper, the (2+1)-dimensional fifth-order KdV equation is analytically investigated. By using Hirota’s bilinear method combined with perturbation expansion, the high-order breather solutions of the fifth-order KdV equation are generated. Then, the high-order lump solutions are also derived from the soliton solutions by a long-wave limit method and some suitable parameter constraints. Furthermore, we extend this method to obtain hybrid solutions by taking long-wave limit for partial soliton solutions. Finally, the dynamic behavior of these solutions is presented in the figures.


Sign in / Sign up

Export Citation Format

Share Document