Pharmacokinetics of the novel plasminogen activator Desmodus rotundus plasminogen activator in animals and extrapolation to man

1996 ◽  
Vol 10 (5-6) ◽  
pp. 269-276 ◽  
Author(s):  
M. Hildebrand ◽  
A.S. Bhargava ◽  
P. Bringmann ◽  
A. Schütt ◽  
P. Verhallen
1995 ◽  
Vol 74 (06) ◽  
pp. 1501-1510 ◽  
Author(s):  
J Kuiper ◽  
H van de Bilt ◽  
U Martin ◽  
Th J C van Berkel

SummaryThe catabolism of the novel plasminogen activator reteplase (BM 06.022) was described. For this purpose BM 06.022 was radiolabelled with l25I or with the accumulating label l25I-tyramine cellobiose (l25I-TC).BM 06.022 was injected at a pharmacological dose of 380 μg/kg b.w. and it was cleared from the plasma in a biphasic manner with a half-life of about 1 min in the α-phase and t1/2of 20-28 min in the β-phase. 28% and 72% of the injected dose was cleared in the α-phase and β-phase, respectively. Initially liver, kidneys, skin, bones, lungs, spleen, and muscles contributed mainly to the plasma clearance. Only liver and the kidneys, however, were responsible for the uptake and subsequent degradation of BM 06.022 and contributed for 75% to the catabolism of BM 06.022. BM 06.022 was degraded in the lysosomal compartment of both organs. Parenchymal liver cells were responsible for 70% of the liver uptake of BM 06.022. BM 06.022 associated rapidly to isolated rat parenchymal liver cells and was subsequently degraded in the lysosomal compartment of these cells. BM 06.022 bound with low-affinity to the parenchymal liver cells (550 nM) and the binding of BM 06.022 could be displaced by t-PA (IC50 5.6 nM), indicating that the low-density lipoprotein receptor-related protein (LRP) could be involved in the binding of BM 06.022. GST-RAP, which is an inhibitor of LRP, could in vivo significantly inhibit the uptake of BM 06.022 in the liver.It is concluded that BM 06.022 is metabolized primarily in the liver and the kidneys. These organs take up and degrade BM 06.022 in the lysosomes. The uptake mechanism of BM 06.022 in the kidneys is unknown, while LRP is responsible for a low-affinity binding and uptake of BM 06.022 in parenchymal liver cells.


2009 ◽  
Vol 102 (09) ◽  
pp. 606-608 ◽  
Author(s):  
Richard Macrez ◽  
Torsten Schulz ◽  
Karl-Uwe Petersen ◽  
Vincent Berezowski ◽  
Roméo Cecchelli ◽  
...  

2004 ◽  
Vol 92 (11) ◽  
pp. 956-965 ◽  
Author(s):  
Ningzheng Dong ◽  
Valdeci Da Cunha ◽  
Andrej Citkowicz ◽  
Faye Wu ◽  
Jon Vincelette ◽  
...  

SummaryDuring thrombosis, P-selectin is expressed on the surface of activated endothelial cells and platelets. We hypothesized that targeting a plasminogen activator (PA) to P-selectin would enhance local thrombolysis and reduce bleeding risk. Previously, a urokinase (uPA)/anti-P-selectin antibody (HuSZ51) fusion protein was shown to increase fibrinolysis in a hamster pulmonary embolism model. To explore the therapeutic potential of this targeting strategy, we fused the fibrin-selective Desmodus rotundus salivary PA α1 (dsPAα1) to HuSZ51 and compared the fibrinolytic activity of P-selectin-targeted dsPAα1 (HuSZ51-dsPAα1) to unmodified dsPAα1 in vitro and in vivo. HuSZ51-dsPAα1 and dsPAα1 were expressed in CHO cells and purified to homogeneity by affinity chromatography. HuSZ51dsPAα1 bound to thrombin-activated human and dog platelets with comparable affinities to that of parental antibody SZ51. The fusion protein retained the catalytic activities of dsPAα1 in chromogenic and clot lysis assays, indicating that dsPAα1 is fully functional when fused to HuSZ51. Compared to dsPAα1, HuSZ51-dsPAα1 had similar thrombolytic efficacy in a rat pulmonary embolism model and anti-thrombotic potency in a dog model of femoral artery thrombosis. However, HuSZ51dsPAα1 was less effective in lysis of preexisting arterial thrombi in the dog model. The reduced arterial thrombolysis was not due to the pharmacokinetic properties of HuSZ51-dsPAα1 because antigen level and amidolytic activity were higher in plasma from HuSZ51-dsPAα1-treated groups than corresponding dsPAα1-treated groups. These data indicate that the thrombolytic efficacy of HuSZ51-dsPAα1 varied dependent on the physical composition of thrombi. The lack of stimulation by fibrin in arterial thrombi may contribute to the attenuated thrombolytic efficacy of HuSZ51-dsPAα1 in the dog model.


Blood ◽  
1992 ◽  
Vol 79 (5) ◽  
pp. 1213-1217
Author(s):  
W Witt ◽  
B Baldus ◽  
P Bringmann ◽  
L Cashion ◽  
P Donner ◽  
...  

rDSPA alpha 1 (recombinant Desmodus salivary plasminogen activator alpha 1) is a recombinant protein corresponding to a natural plasminogen activator from the vampire bat Desmodus rotundus. The thrombolytic properties of rDSPA alpha 1 and tissue-type plasminogen activator (t-PA) were compared in a rat model of pulmonary embolism. Whole blood clots, produced in vitro and labeled with 125I-fibrinogen, were embolized into the lungs of anesthetized rats. Thrombolysis was calculated from the difference between initial clot radioactivity and that remaining in the lungs at 60 minutes. Blood was sampled for gamma counting, measurement of hemostatic factors, and plasminogen activator antigen levels. Thrombolysis at 3, 10, 30, and 100 nmol/kg intravenously (10% bolus, 90% over 60 minutes) amounted to 30% +/- 2%, 51% +/- 4%, 85% +/- 4%, 98% +/- 0% for rDSPA alpha 1 and 30% +/- 3%, 41% +/- 3%, 57% +/- 6%, 93% +/- 2% for t-PA (controls: 29% +/- 2%; mean +/- SEM, n greater than or equal to 6). t-PA at 100 nmol/kg significantly decreased fibrinogen, plasminogen, and alpha 2- antiplasmin levels by 33% +/- 7%, 38% +/- 8%, and 61% +/- 9%, whereas rDSPA alpha 1 at 100 nmol/kg only lowered alpha 2-antiplasmin significantly (by 29% +/- 6%). Compared with t-PA, rDSPA alpha 1 is the more potent and more clot selective (fibrin specific) thrombolytic agent. These results suggest that rDSPA alpha 1 may be safer and more efficacious than currently used thrombolytics.


Sign in / Sign up

Export Citation Format

Share Document