Issues of sustainability and pollution prevention in environmental engineering education

1998 ◽  
Vol 38 (11) ◽  
2004 ◽  
Vol 49 (8) ◽  
pp. 19-25 ◽  
Author(s):  
K. Jahan ◽  
J.W. Everett ◽  
R.P. Hesketh ◽  
P.M. Jansson ◽  
K. Hollar

Environmental engineering education at universities is a rapidly changing field globally. Traditionally it has resided in the civil engineering program addressing water and wastewater quality, treatment, design and regulatory issues. In recent years environmental engineering has become a much broader field encompassing water, wastewater, soil pollution, air pollution, risk assessment, ecosystems, human health, toxicology, sustainable development, regulatory aspects and much more. The need to introduce environmental engineering/green engineering/pollution prevention/design for the environment concepts to undergraduate engineering students has become recognized to be increasingly important. This need is being driven in part through the US Engineering Accreditation Commission Accreditation Board for Engineering and Technology criteria 2000. Thus there has been a major shift in environmental engineering education and it no longer resides only within the civil engineering discipline. This paper focuses on the development of innovative curricula for a brand new engineering program at Rowan University that integrates environmental education for all engineers. A common course known as "engineering clinic" was developed for all engineering students throughout their eight semesters of engineering education. One of the clinic goals is to integrate engineering design and the environment. The program, in its seventh year, indicates successful implementation of environmental education in all four engineering disciplines in their course work and clinics.


1998 ◽  
Vol 38 (11) ◽  
pp. 271-278 ◽  
Author(s):  
F. Gutiérrez-Martín ◽  
M. F. Dahab

This paper discusses the concepts of sustainability and pollution prevention and their roles in environmental science and engineering education. It is argued that environmental engineering science and education must be re-oriented to focus primarily on pollution prevention technologies as a mechanism for attaining the goal of sustainability. While it is acknowledged that traditional pollution control will remain as an integral part of environmental science and engineering education, the paradigm shift (in favor of pollution prevention) must be completed in order for humanity to realize, albeit remotely, the goal of sustainability. The paper presents two case studies; at the University of Nebraska-Lincoln (USA) and at the Universidad Politécnica de Madrid (Spain) where efforts are being made to re-orient environmental engineering education to promote the concept of sustainability as the primary goal of environmental management.


2000 ◽  
Vol 41 (2) ◽  
pp. 47-54 ◽  
Author(s):  
H.H. Hahn

Traditionally in Germany environmental engineering education took place within the context of a civil engineering programme. There were reasons for this: the beginning of much of what we understand today to be environmental works fell within the parameters of city engineering. There were and are advantages mostly in view of the necessary planning, construction and operation of environmental infrastructure. There are also disadvantages which become more and more pronounced as the field of environmental protection expands: the civil engineer frequently lacks basic training in disciplines such as biology and chemistry and carries a large and sometimes burdensome knowledge of other less relevant subjects. Thus, educators begin to look for alternatives. This paper deals with an alternative that was developed some ten years ago and therefore has proven viable and successful: at the University of Karlsruhe students may choose to major in environmental engineering within the context or on the basis of an economics and business administration curriculum. The basic question here is as to what extent the student masters the field of environmental engineering if he or she has predominantly a solid background in social sciences and very little in natural sciences. The paper will describe the curriculum in structure and intensity and evaluate the accumulated knowledge and suitability of these students in terms of actual environmental problems. This will be done in terms of examination performance parallel and/or relative to traditionally trained civil environmental engineers as well as in terms of topics successfully treated in Masters' theses. In conclusion, it is argued that such combination of curricula should not be confined to economic sciences and environmental engineering but also be planned for legal sciences and environmental engineering.


2020 ◽  
Vol 26 (1) ◽  
pp. 63-70
Author(s):  
Tapio S. Katko ◽  
Jarmo J. Hukka

This paper aims at shedding light on the significance of water epidemics and their potential positive impacts on improving preparedness in water and sanitation services. We explore the water epidemic of Nokia in 2007 and preparedness-related reactions since then. The corona case confirms the fundamental role of clean water for well-being in communities, the need for sound management of water services to proactively promote public health, as well as the need for expanding conventional water and environmental engineering education and research to offer more holistic views.


2020 ◽  
Vol 50 (4) ◽  
pp. 04-05
Author(s):  
Procopio Cocci

The objective of the ecological building instruction ought not just train understudies' natural information, the more significant thing is that it prepares understudies' natural ethics and structures the conduct which is good for the earth, and these must be shaped by training, in actuality. In the customary showing model of training, one instructor can just guide one practice simultaneously. With the improvement of organization innovation, instructor can control the distinctive practice exercises firing up in various areas or in various occasions by network. In light of the incorporation of viable need and intuitive qualities of condition instruction, the creator set forward an online domain training mode named "practice-intelligent partake in". The Core of this mode is to prepare understudies' natural ethics by training and to understand educators' guidance through organization.


1992 ◽  
Vol 6 (1) ◽  
pp. 39-42 ◽  
Author(s):  
David C. Cawsey

COMETT-sponsored University Enterprise Training Partnership (UETPs) fall into two distinct categories. Regional UETPs operate within geographical regions, while sectoral UETPs sponsor activities within a specific industry or scientific discipline. This article describes the activities of the UETP Environmental Engineering Education and the following article looks at the environmental engineering activities carried out by a related sectoral UETP, the European Polytechnic Environmental Association.


Sign in / Sign up

Export Citation Format

Share Document