Inflated and contradictory category naming deficits in Alzheimer’s disease?

2003 ◽  
Vol 53 (2) ◽  
pp. 416-418 ◽  
Author(s):  
Keith R Laws ◽  
Verity C Leeson ◽  
Tim M Gale
1991 ◽  
Vol 73 (1) ◽  
pp. 175-183 ◽  
Author(s):  
Pierre Cormier ◽  
Judith A. Margison ◽  
John D. Fisk

The contribution of perceptual and semantic processing deficits to naming-test performance by Alzheimer's Disease subjects was examined. Groups of 34 Alzheimer subjects and 25 elderly controls completed tests of naming standard line drawings and naming perceptually degraded figures, and a test of verbal fluency for a specific semantic category. Alzheimer subjects were impaired on all measures and, when their naming-test errors were analyzed, they showed higher proportions of perceptual errors and failures to respond. Further, considerable variability in the proportions of different types of error was found both among subjects and among test items. These findings indicate that poor naming-test performance cannot necessarily be attributed to a specific deficit in semantic processing. Also, the discrepancies between previous reports of the naming deficits in Alzheimer's Disease may reflect differences in task difficulty and item selection that were apparent in this study.


2007 ◽  
Vol 45 (12) ◽  
pp. 2674-2682 ◽  
Author(s):  
Keith R. Laws ◽  
Rebecca L. Adlington ◽  
Tim M. Gale ◽  
F. Javier Moreno-Martínez ◽  
Giuseppe Sartori

2019 ◽  
Vol 42 ◽  
Author(s):  
Colleen M. Kelley ◽  
Larry L. Jacoby

Abstract Cognitive control constrains retrieval processing and so restricts what comes to mind as input to the attribution system. We review evidence that older adults, patients with Alzheimer's disease, and people with traumatic brain injury exert less cognitive control during retrieval, and so are susceptible to memory misattributions in the form of dramatic levels of false remembering.


Author(s):  
J. Metuzals ◽  
D. F. Clapin ◽  
V. Montpetit

Information on the conformation of paired helical filaments (PHF) and the neurofilamentous (NF) network is essential for an understanding of the mechanisms involved in the formation of the primary lesions of Alzheimer's disease (AD): tangles and plaques. The structural and chemical relationships between the NF and the PHF have to be clarified in order to discover the etiological factors of this disease. We are investigating by stereo electron microscopic and biochemical techniques frontal lobe biopsies from patients with AD and squid giant axon preparations. The helical nature of the lesion in AD is related to pathological alterations of basic properties of the nervous system due to the helical symmetry that exists at all hierarchic structural levels in the normal brain. Because of this helical symmetry of NF protein assemblies and PHF, the employment of structure reconstruction techniques to determine the conformation, particularly the handedness of these structures, is most promising. Figs. 1-3 are frontal lobe biopsies.


Author(s):  
Mark Ellisman ◽  
Maryann Martone ◽  
Gabriel Soto ◽  
Eleizer Masliah ◽  
David Hessler ◽  
...  

Structurally-oriented biologists examine cells, tissues, organelles and macromolecules in order to gain insight into cellular and molecular physiology by relating structure to function. The understanding of these structures can be greatly enhanced by the use of techniques for the visualization and quantitative analysis of three-dimensional structure. Three projects from current research activities will be presented in order to illustrate both the present capabilities of computer aided techniques as well as their limitations and future possibilities.The first project concerns the three-dimensional reconstruction of the neuritic plaques found in the brains of patients with Alzheimer's disease. We have developed a software package “Synu” for investigation of 3D data sets which has been used in conjunction with laser confocal light microscopy to study the structure of the neuritic plaque. Tissue sections of autopsy samples from patients with Alzheimer's disease were double-labeled for tau, a cytoskeletal marker for abnormal neurites, and synaptophysin, a marker of presynaptic terminals.


Author(s):  
D.F. Clapin ◽  
V.J.A. Montpetit

Alzheimer's disease is characterized by the accumulation of abnormal filamentous proteins. The most important of these are amyloid fibrils and paired helical filaments (PHF). PHF are located intraneuronally forming bundles called neurofibrillary tangles. The designation of these structures as "tangles" is appropriate at the light microscopic level. However, localized domains within individual tangles appear to demonstrate a regular spacing which may indicate a liquid crystalline phase. The purpose of this paper is to present a statistical geometric analysis of PHF packing.


Author(s):  
V.J.A. Montpetit ◽  
S. Dancea ◽  
S.W. French ◽  
D.F. Clapin

A continuing problem in Alzheimer research is the lack of a suitable animal model for the disease. The absence of neurofibrillary tangles of paired helical filaments is the most critical difference in the processes by which the central nervous system ages in most species other than man. However, restricting consideration to single phenomena, one may identify animal models for specific aspects of Alzheimer's disease. Abnormal fibers resembling PHF have been observed in dorsal root ganglia (DRG) neurons of rats in a study of chronic ethanol intoxication and spontaneously in aged rats. We present in this report evidence that PHF-like filaments occur in ethanol-treated rats of young age. In control animals lesions similar in some respects to our observations of cytoskeletal pathology in pyridoxine induced neurotoxicity were observed.Male Wistar BR rats (Charles River Labs) weighing 350 to 400 g, were implanted with a single gastrostomy cannula and infused with a liquid diet containing 30% of total calories as fat plus ethanol or isocaloric dextrose.


Sign in / Sign up

Export Citation Format

Share Document