Chapter 14 Quantitative Analysis By Gas Chromatography Response Factors. Determination. Accuracy and Precision

Author(s):  
Yuan Rao ◽  
Arno de Klerk

AbstractThe nitrogen-containing aromatic compounds found in the petrochemical industry are varied and extend beyond classes such as the anilines, pyrroles and pyridines. Quantification of these nitrogen-containing compounds that may occur in complex mixtures has practical application for quality assurance, process development and the evaluation of conversion processes. Selective detection of nitrogen-containing species in complex mixtures is possible by making use of gas chromatography coupled with a nitrogen phosphorous detector (GC-NPD), which is also called a thermionic detector. Despite the linearity of the NPD response to individual nitrogen-containing compounds, the response factor is different for different compounds and even isomers of the same species. Quantitative analysis using an NPD requires species-specific calibration. The reason for the sensitivity of the NPD to structure is related to the ease of forming the cyano-radical that is ionized to the cyanide anion, which is detected. The operation of the NPD was related to the processes of pyrolysis and subsequent ionization. It was possible to offer plausible explanations for differences in response factors for isomers based on pyrolysis chemistry. Due to this relationship, the NPD response can in the same way be used to provide information of practical relevance beyond its analytical value and a few possible applications were outlined.


2008 ◽  
Vol 73 (12) ◽  
pp. 1223-1233 ◽  
Author(s):  
Ya-Zhu Xu ◽  
Huei-Ru Lin ◽  
Ahai-Chang Lua ◽  
Chinpiao Chen

The use of gas chromatography-mass spectrometry (GC-MS) in forensic analysis is increasing. To exploit fully the capabilities of MS, labeled standards, that can be used to improve the performance of the quantitative analysis, and to increase accuracy and precision, are required. A series of deuterated internal standards, corresponding to the 2C-series of phenethylamine derivatives, including 4-bromo-2,5-dimethoxyphenethylamine-d6 (2C-B), 4-chloro- 2,5-dimethoxyphenethylamine-d6 (2C-C), 4-iodo-2,5-dimethoxy-phenethylamine-d6 (2C-I), 4-ethylthio-2,5-dimethoxy-phenethylamine-d6 (2C-T-2) and 2,5-dimethoxy-4-n-propylthiophenethylamine-d6 (2C-T-7), were synthesized. These deuterated compounds were used to analyze for the corresponding unlabeled compounds in urine. The analysis was performed using GC-MS, with the selected ion monitoring (SIM) technique, whereby good results were achieved.


Sign in / Sign up

Export Citation Format

Share Document