The effect of branching on slip and rheological properties of lubricants in molecular dynamics simulation of Couette shear flow

2002 ◽  
Vol 35 (1) ◽  
pp. 35-46 ◽  
Author(s):  
A. Jabbarzadeh ◽  
J.D. Atkinson ◽  
R.I. Tanner
Author(s):  
Chengzhi Hu ◽  
Minli Bai ◽  
Jizu Lv ◽  
Yuyan Wang

The flow and heat transfer characteristics of nanofluids in the near-wall region were studied by non-equilibrium molecular dynamics simulation. The nanofluid model consisted of one spherical copper nanoparticle and argon atoms as base liquid. The effective thermal conductivity (ETC) of nanofluids and base fluid in shear flow fields were obtained. The ETC was increased with the increasing of shear velocity for both base fluid and nanofluids. The heat transfer enhancement of nanofluids in the shear flow field (v≠0) is better than that in the zero-shear flow field (v=0). By analyzing the flow characteristics we proved that the micro-motions of nanoparticles were another mechanism responsible for the heat transfer enhancement of nanofluids in the flow field. Based on the model built in the paper, we found that the thermal properties accounted for 52%–65% heat transfer enhancement and the contribution of micro-motions is 35%–48%.


Author(s):  
Tolga Akıner ◽  
Hakan Ertürk ◽  
Kunt Atalık

Nanofluids are new class of fluids which can be used for many engineering applications due to their enhanced thermal properties. The macroscopic modeling tools used for flow simulations usually rely on effective thermal and rheological properties of the nanofluids that can be predicted through various effective medium theories. As these theories significantly under-predict, using correlations based on experimental data is considered as the only reliable means for prediction of these effective properties. However, the behavior might change significantly once the particle material or base fluid change due to different particle fluid interactions in the molecular level. One of the most promising means of modeling effective properties of the nanofluids is the molecular dynamics simulations where all the intermolecular effects can be modeled. This study investigates equilibrium molecular dynamics simulation of the water-Cu nanofluids to predict the thermal and rheological properties. The molecular dynamics simulation is carried out to achieve a thermodynamic equilibrium, based on a state that is defined by targeted thermodynamic properties of the system. The Green-Kubo method is used to predict the thermal conductivity and viscosity of the system. The study considers the use of different combining rules such as Lorentz-Berthelot and sixth-power rules for defining the inter-atomic potentials for water modeled by SPC/E and nanoparticles modeled by Lennard-Jones potential. The predicted effective properties that are thermal conductivity and shear viscosity are then compared with experimental data from literature. The predicted transport properties at different temperatures and particle concentrations are compared to experimental data from literature for model validation.


Sign in / Sign up

Export Citation Format

Share Document