Timing and thermal influence of late orogenic extension in the lower crust: a UPb geochronological study from the southwest Grenville orogen, Canada

1998 ◽  
Vol 89 (1-2) ◽  
pp. 25-45 ◽  
Author(s):  
J.W.F. Ketchum ◽  
L.M. Heaman ◽  
T.E. Krogh ◽  
N.G. Culshaw ◽  
R.A. Jamieson
2019 ◽  
pp. 41-44
Author(s):  
N.G. Musakaev ◽  
◽  
S.L. Borodin ◽  
D.S. Belskikh ◽  
◽  
...  
Keyword(s):  

2019 ◽  
Vol 484 (1) ◽  
pp. 61-65
Author(s):  
R. M. Antonuk ◽  
A. A. Tretyakov ◽  
K. E. Degtyarev ◽  
A. B. Kotov

U–Pb geochronological study of amphibole-bearing quartz monzodiorites of the alkali-ultramafic Zhilandy complex in Central Kazakhstan, whose formation is deduced at the Early Ordovician era (479 ± 3 Ma). The obtained data indicate three stages of intra-plate magmatism in the western part of the Central Asian Orogenic Belt: Late Neoproterozoic stage of alkali syenites of the Karsakpay complex intrusion, Early Cambrian stage of ultramafic-gabbroid plutons of the Ulutau complex formation, and Late Cambrian–Early Ordovician stage of formation of the Zhilandy complex and Krasnomay complex intrusions.


2018 ◽  
Author(s):  
Griffin A. Moyer ◽  
◽  
Jesse Lee ◽  
Christopher Eddy ◽  
Elena A. Miranda ◽  
...  

2018 ◽  
Author(s):  
Ryan L. Rogers ◽  
◽  
James W. Yelverton ◽  
Harold H. Stowell ◽  
Elizabeth M. Bollen ◽  
...  

MTZ worldwide ◽  
2021 ◽  
Vol 82 (2) ◽  
pp. 56-60
Author(s):  
Ole Willers ◽  
Jörg R. Seume ◽  
Christopher Zeh ◽  
Hubert Schwarze
Keyword(s):  

Author(s):  
Jia Chang ◽  
Andreas Audétat ◽  
Jian-Wei Li

Abstract Two suites of amphibole-rich mafic‒ultramafic rocks associated with the voluminous intermediate to felsic rocks in the Early Cretaceous Laiyuan intrusive-volcanic complex (North China Craton) are studied here by detailed petrography, mineral- and melt inclusion chemistry, and thermobarometry to demonstrate an in-situ reaction-replacement origin of the hornblendites. Moreover, a large set of compiled and newly obtained geochronological and whole-rock elemental and Sr-Nd isotopic data are used to constrain the tectono-magmatic evolution of the Laiyuan complex. Early mafic‒ultramafic rocks occur mainly as amphibole-rich mafic‒ultramafic intrusions situated at the edge of the Laiyuan complex. These intrusions comprise complex lithologies of olivine-, pyroxene- and phlogopite-bearing hornblendites and various types of gabbroic rocks, which largely formed by in-situ crystallization of hydrous mafic magmas that experienced gravitational settling of early-crystallized olivine and clinopyroxene at low pressures of 0.10‒0.20 GPa (∼4‒8 km crustal depth); the hornblendites formed in cumulate zones by cooling-driven crystallization of 55‒75 vol% hornblende, 10‒20 vol% orthopyroxene and 3‒10 vol% phlogopite at the expense of olivine and clinopyroxene. A later suite of mafic rocks occurs as mafic lamprophyre dikes throughout the Laiyuan complex. These dikes occasionally contain some pure hornblendite xenoliths, which formed by reaction-replacement of clinopyroxene at high pressures of up to 0.97‒1.25 GPa (∼37‒47 km crustal depth). Mass balance calculations suggest that the olivine-, pyroxene- and phlogopite-bearing hornblendites in the early mafic‒ultramafic intrusions formed almost without melt extraction, whereas the pure hornblendites brought up by lamprophyre dikes required extraction of ≥ 20‒30 wt% residual andesitic to dacitic melts. The latter suggests that fractionation of amphibole in the middle to lower crust through the formation of reaction-replacement hornblendites is a viable way to produce adakite-like magmas. New age constraints suggest that the early mafic-ultramafic intrusions formed during ∼132‒138 Ma, which overlaps with the timespan of ∼126‒145 Ma recorded by the much more voluminous intermediate to felsic rocks of the Laiyuan complex. By contrast, the late mafic and intermediate lamprophyre dikes were emplaced during ∼110‒125 Ma. Therefore, the voluminous early magmatism in the Laiyuan complex was likely triggered by the retreat of the flat-subducting Paleo-Pacific slab, whereas the minor later, mafic to intermediate magmas may have formed in response to further slab sinking-induced mantle thermal perturbations. Whole-rock geochemical data suggest that the early mafic magmas formed by partial melting of subduction-related metasomatized lithospheric mantle, and that the early intermediate to felsic magmas with adakite-like signatures formed from mafic magmas through strong amphibole fractionation without plagioclase in the lower crust. The late mafic magmas seem to be derived from a slightly different metasomatized lithospheric mantle by lower degrees of partial melting.


Sign in / Sign up

Export Citation Format

Share Document