Modulation of metabotropic glutamate receptors fails to prevent the loss of adult rat retinal ganglion cells following axotomy or N-methyl-d-aspartate lesion in vivo

2001 ◽  
Vol 315 (3) ◽  
pp. 117-120 ◽  
Author(s):  
Pawel Kermer ◽  
Nikolaj Klöcker ◽  
Mathias Bähr
2009 ◽  
Vol 102 (6) ◽  
pp. 3728-3739 ◽  
Author(s):  
Jianing Yu ◽  
Bryan A. Daniels ◽  
William H. Baldridge

As in many CNS neurons, retinal ganglion cells (RGCs) receive fast synaptic activation through postsynaptic ionotropic receptors. However, the potential role of postsynaptic group I metabotropic glutamate receptors (mGluRs) in these neurons is unknown. In this study we first demonstrated that the selective group I mGluR agonist ( S)-3,5-dihydroxyphenylglycine (DHPG) increased intracellular calcium concentration in neurons within the ganglion cell layer of the rat retina. This prompted us to use an immunopanned-RGC and cortical astroglia coculture preparation to explore the effect of group I mGluR activation on the electrophysiological properties of cultured RGCs. Using perforated patch-clamp recordings in current-clamp configuration, we found that application of DHPG increased spontaneous spiking and depolarized the resting membrane potential of RGCs. This boosting effect was attributed to an increase in membrane resistance due to blockade of a background K+ conductance. Further experiments showed that the group I mGluR-sensitive K+ conductance was not blocked by 3 mM Cs+, but was sensitive to acidification. Pharmacological studies indicated that the effect of DHPG on RGCs was mediated by the mGluR1 rather than the mGluR5 receptor subtype. Our results suggest a facilitatory role for group I mGluR activation in modulating RGC excitability in the mammalian inner retina.


2013 ◽  
Vol 6 (1) ◽  
pp. 015001 ◽  
Author(s):  
Barbara Lorber ◽  
Wen-Kai Hsiao ◽  
Ian M Hutchings ◽  
Keith R Martin

2011 ◽  
Vol 28 (5) ◽  
pp. 403-417 ◽  
Author(s):  
WALTER F. HEINE ◽  
CHRISTOPHER L. PASSAGLIA

AbstractThe rat is a popular animal model for vision research, yet there is little quantitative information about the physiological properties of the cells that provide its brain with visual input, the retinal ganglion cells. It is not clear whether rats even possess the full complement of ganglion cell types found in other mammals. Since such information is important for evaluating rodent models of visual disease and elucidating the function of homologous and heterologous cells in different animals, we recorded from rat ganglion cells in vivo and systematically measured their spatial receptive field (RF) properties using spot, annulus, and grating patterns. Most of the recorded cells bore likeness to cat X and Y cells, exhibiting brisk responses, center-surround RFs, and linear or nonlinear spatial summation. The others resembled various types of mammalian W cell, including local-edge-detector cells, suppressed-by-contrast cells, and an unusual type with an ON–OFF surround. They generally exhibited sluggish responses, larger RFs, and lower responsiveness. The peak responsivity of brisk-nonlinear (Y-type) cells was around twice that of brisk-linear (X-type) cells and several fold that of sluggish cells. The RF size of brisk-linear and brisk-nonlinear cells was indistinguishable, with average center and surround diameters of 5.6 ± 1.3 and 26.4 ± 11.3 deg, respectively. In contrast, the center diameter of recorded sluggish cells averaged 12.8 ± 7.9 deg. The homogeneous RF size of rat brisk cells is unlike that of cat X and Y cells, and its implication regarding the putative roles of these two ganglion cell types in visual signaling is discussed.


2011 ◽  
Vol 31 (14) ◽  
pp. 5495-5503 ◽  
Author(s):  
R. T. Ibad ◽  
J. Rheey ◽  
S. Mrejen ◽  
V. Forster ◽  
S. Picaud ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document