Activation of group I metabotropic glutamate receptors regulates the excitability of rat retinal ganglion cells by suppressing Kir and I h

2016 ◽  
Vol 222 (2) ◽  
pp. 813-830 ◽  
Author(s):  
Qian Li ◽  
Peng Cui ◽  
Yanying Miao ◽  
Feng Gao ◽  
Xue-Yan Li ◽  
...  
2009 ◽  
Vol 102 (6) ◽  
pp. 3728-3739 ◽  
Author(s):  
Jianing Yu ◽  
Bryan A. Daniels ◽  
William H. Baldridge

As in many CNS neurons, retinal ganglion cells (RGCs) receive fast synaptic activation through postsynaptic ionotropic receptors. However, the potential role of postsynaptic group I metabotropic glutamate receptors (mGluRs) in these neurons is unknown. In this study we first demonstrated that the selective group I mGluR agonist ( S)-3,5-dihydroxyphenylglycine (DHPG) increased intracellular calcium concentration in neurons within the ganglion cell layer of the rat retina. This prompted us to use an immunopanned-RGC and cortical astroglia coculture preparation to explore the effect of group I mGluR activation on the electrophysiological properties of cultured RGCs. Using perforated patch-clamp recordings in current-clamp configuration, we found that application of DHPG increased spontaneous spiking and depolarized the resting membrane potential of RGCs. This boosting effect was attributed to an increase in membrane resistance due to blockade of a background K+ conductance. Further experiments showed that the group I mGluR-sensitive K+ conductance was not blocked by 3 mM Cs+, but was sensitive to acidification. Pharmacological studies indicated that the effect of DHPG on RGCs was mediated by the mGluR1 rather than the mGluR5 receptor subtype. Our results suggest a facilitatory role for group I mGluR activation in modulating RGC excitability in the mammalian inner retina.


2007 ◽  
Vol 97 (4) ◽  
pp. 3136-3141 ◽  
Author(s):  
Thomas Heinbockel ◽  
Kathryn A. Hamilton ◽  
Matthew Ennis

In the main olfactory bulb, several populations of granule cells (GCs) can be distinguished based on the soma location either superficially, interspersed with mitral cells within the mitral cell layer (MCL), or deeper, within the GC layer (GCL). Little is known about the physiological properties of superficial GCs (sGCs) versus deep GCs (dGCs). Here, we used patch-clamp recording methods to explore the role of Group I metabotropic glutamate receptors (mGluRs) in regulating the activity of GCs in slices from wildtype and mGluR−/− mutant mice. In wildtype mice, bath application of the selective Group I mGluR agonist DHPG depolarized and increased the firing rate of both GC subtypes. In the presence of blockers of fast synaptic transmission (APV, CNQX, gabazine), DHPG directly depolarized both GC subtypes, although the two GC subtypes responded differentially to DHPG in mGluR1−/− and mGluR5−/− mice. DHPG depolarized sGCs in slices from mGluR5−/− mice, although it had no effect on sGCs in slices from mGluR1−/− mice. By contrast, DHPG depolarized dGCs in slices from mGluR1−/− mice but had no effect on dGCs in slices from mGluR5−/− mice. Previous studies showed that mitral cells express mGluR1 but not mGluR5. The present results therefore suggest that sGCs are more similar to mitral cells than dGCs in terms of mGluR expression.


2012 ◽  
Vol 107 (4) ◽  
pp. 1058-1066 ◽  
Author(s):  
Peng Zhang ◽  
John E. Lisman

CaMKII and PSD-95 are the two most abundant postsynaptic proteins in the postsynaptic density (PSD). Overexpression of either can dramatically increase synaptic strength and saturate long-term potentiation (LTP). To do so, CaMKII must be activated, but the same is not true for PSD-95; expressing wild-type PSD-95 is sufficient. This raises the question of whether PSD-95's effects are simply an equilibrium process [increasing the number of AMPA receptor (AMPAR) slots] or whether activity is somehow involved. To examine this question, we blocked activity in cultured hippocampal slices with TTX and found that the effects of PSD-95 overexpression were greatly reduced. We next studied the type of receptors involved. The effects of PSD-95 were prevented by antagonists of group I metabotropic glutamate receptors (mGluRs) but not by antagonists of ionotropic glutamate receptors. The inhibition of PSD-95-induced strengthening was not simply a result of inhibition of PSD-95 synthesis. To understand the mechanisms involved, we tested the role of CaMKII. Overexpression of a CaMKII inhibitor, CN19, greatly reduced the effect of PSD-95. We conclude that PSD-95 cannot itself increase synaptic strength simply by increasing the number of AMPAR slots; rather, PSD-95's effects on synaptic strength require an activity-dependent process involving mGluR and CaMKII.


Sign in / Sign up

Export Citation Format

Share Document