An effective continuum damage mechanics model for creep–fatigue life assessment of a steam turbine rotor

2003 ◽  
Vol 80 (6) ◽  
pp. 389-396 ◽  
Author(s):  
Jing JianPing ◽  
Meng Guang ◽  
Sun Yi ◽  
Xia SongBo
2005 ◽  
Vol 128 (1) ◽  
pp. 173-177 ◽  
Author(s):  
Jing JianPing ◽  
Meng Guang ◽  
Sun Yi ◽  
Xia SongBo

A nonlinear continuum damage mechanics model is proposed to assess the high temperature creep life of a steam turbine rotor, in which the effect of mean stress is taken into account and the damage is accumulated nonlinearly. The model is applied to a 300 MW steam turbine under hot start operation. The results are compared with those from the linear accumulation theory that is dominant in the creep life assessment of steam turbine rotors at present. The comparison results show that the nonlinear continuum damage mechanics model describes the accumulation and development of damage better than the linear accumulation theory.


Author(s):  
Jianfeng Mao ◽  
Weizhe Wang ◽  
Yingzheng Liu ◽  
Junhui Zhang

Damage of a high temperature rotor subjected to the creep-fatigue interaction was numerically investigated. Toward that end, a high temperature rotor of a 1000MW supercritical steam turbine was chosen for the study. A continuum damage mechanics model (CDM), which depicts the fatigue-creep interaction, was developed in the present paper. During the practical startup and shutdown processes, the influence of the multiaxial creep-fatigue interaction on strength of the rotor was analyzed in terms of stress, strain and damage. Comparison of the results from linear damage accumulation model (LDA) and CDM demonstrated that CDM was more reasonable to predict the lifetime of the rotor due to the multiaxial creep-fatigue interaction.


2018 ◽  
Vol 28 (3) ◽  
pp. 455-477 ◽  
Author(s):  
WZ Wang ◽  
YZ Liu

The aim of this study is to analyze the creep–fatigue interaction behavior of a steam turbine rotor under idealized cyclic thermomechanical loading conditions. A Chaboche model-based material constitutive model is applied to simulate the multiaxial stress–strain behavior in the rotor. Influence of accumulated damage during the whole iterations on the creep–fatigue interaction behavior is described by continuum damage mechanics. Analysis of the temperature and stress variations during the startup phase reveals that the startup phase can be divided into a condensation phase, a high steam flux phase, and an elevated temperature phase and that thermal stress reaches its maximum value in the condensation phase. In addition, creep–fatigue interaction in the rotor leads to a gradual decrease in the maximum stress; furthermore, comparison of the von Mises stress displays that the impact of damage accumulation results in the shift of the location with the maximum stress. Investigation of creep–fatigue damage discloses that the total damage is concentrated on the steam inlet notch zone and the blade groove of the first and third stages.


Sign in / Sign up

Export Citation Format

Share Document