Multiaxial Creep-Fatigue Life Prediction on the Rotor of a 1000MW Supercritical Steam Turbine

Author(s):  
Jianfeng Mao ◽  
Weizhe Wang ◽  
Yingzheng Liu ◽  
Junhui Zhang

Damage of a high temperature rotor subjected to the creep-fatigue interaction was numerically investigated. Toward that end, a high temperature rotor of a 1000MW supercritical steam turbine was chosen for the study. A continuum damage mechanics model (CDM), which depicts the fatigue-creep interaction, was developed in the present paper. During the practical startup and shutdown processes, the influence of the multiaxial creep-fatigue interaction on strength of the rotor was analyzed in terms of stress, strain and damage. Comparison of the results from linear damage accumulation model (LDA) and CDM demonstrated that CDM was more reasonable to predict the lifetime of the rotor due to the multiaxial creep-fatigue interaction.

2005 ◽  
Vol 128 (1) ◽  
pp. 173-177 ◽  
Author(s):  
Jing JianPing ◽  
Meng Guang ◽  
Sun Yi ◽  
Xia SongBo

A nonlinear continuum damage mechanics model is proposed to assess the high temperature creep life of a steam turbine rotor, in which the effect of mean stress is taken into account and the damage is accumulated nonlinearly. The model is applied to a 300 MW steam turbine under hot start operation. The results are compared with those from the linear accumulation theory that is dominant in the creep life assessment of steam turbine rotors at present. The comparison results show that the nonlinear continuum damage mechanics model describes the accumulation and development of damage better than the linear accumulation theory.


Author(s):  
A Nayebi ◽  
H Rokhgireh ◽  
M Araghi ◽  
M Mohammadi

Additively manufactured parts often comprise internal porosities due to the manufacturing process, which needs to be considered in modelling their mechanical behaviour. It was experimentally shown that additively manufactured parts’ tensile and compressive mechanical properties are different for various metallic alloys. In this study, isotropic continuum damage mechanics is used to model additively manufactured alloys’ tension and compression behaviours. Compressive stress components can shrink discontinuities present in additively manufactured alloys. Therefore, the crack closure effect was employed to describe different behaviours during uniaxial tension and compression tests. A finite element model embedded in an ABAQUS’s UMAT format was developed to account for the isotropic continuum damage mechanics model. The numerical results of tension and compression tests were compared with experimental observations for additively manufactured maraging steel, AlSi10Mg and Ti-6Al-4V. Stress–strain curves in tension and compression of these alloys were obtained using the continuum damage mechanics model and compared well with the experimental results.


Author(s):  
Sahar Ghatrehsamani ◽  
Saleh Akbarzadeh

Wear coefficient and friction coefficient are two of the key parameters in the performance of any tribo-system. The main purpose of the present research is to use continuum damage mechanics to predict wear coefficient. Thus, a contact model is utilized that can be used to obtain the friction coefficient between the contacting surfaces. By applying this model to the continuum damage mechanics model, the wear coefficient between dry surfaces is predicted. One of the advantages of using this model is that the wear coefficient can be numerically predicted unlike other methods which highly rely on experimental data. In order to verify the results predicted by this model, tests were performed using pin-on-disk test rig for several ST37 samples. The results indicated that the wear coefficient increases with increasing the friction coefficient.


2018 ◽  
Vol 28 (3) ◽  
pp. 455-477 ◽  
Author(s):  
WZ Wang ◽  
YZ Liu

The aim of this study is to analyze the creep–fatigue interaction behavior of a steam turbine rotor under idealized cyclic thermomechanical loading conditions. A Chaboche model-based material constitutive model is applied to simulate the multiaxial stress–strain behavior in the rotor. Influence of accumulated damage during the whole iterations on the creep–fatigue interaction behavior is described by continuum damage mechanics. Analysis of the temperature and stress variations during the startup phase reveals that the startup phase can be divided into a condensation phase, a high steam flux phase, and an elevated temperature phase and that thermal stress reaches its maximum value in the condensation phase. In addition, creep–fatigue interaction in the rotor leads to a gradual decrease in the maximum stress; furthermore, comparison of the von Mises stress displays that the impact of damage accumulation results in the shift of the location with the maximum stress. Investigation of creep–fatigue damage discloses that the total damage is concentrated on the steam inlet notch zone and the blade groove of the first and third stages.


Sign in / Sign up

Export Citation Format

Share Document