Gas permeability and permselectivity in polyimides based on 3,3',4,4'-biphenyltetracarboxylic dianhydride

1989 ◽  
Vol 47 (1-2) ◽  
pp. 203-215 ◽  
Author(s):  
K. Tanaka ◽  
H. Kita ◽  
K. Okamoto ◽  
A. Nakamura ◽  
Y. Kusuki
1990 ◽  
Vol 22 (5) ◽  
pp. 381-385 ◽  
Author(s):  
Kazuhiro Tanaka ◽  
Hidetoshi Kita ◽  
Ken-ichi Okamoto ◽  
Asumaru Nakamura ◽  
Yoshihiro Kusuki

2017 ◽  
Vol 30 (2) ◽  
pp. 161-171 ◽  
Author(s):  
Guangliang Song ◽  
Lina Wang ◽  
Dandan Liu ◽  
Jianan Yao ◽  
Yiming Cao

Polyimides (PIs) with single phenyl pendant substitution were prepared based on three diamines containing phenyl pendant group, namely, 2,5-bis(4-aminophenoxy) biphenyl, 2-phenyl-4,4′-diaminodiphenyl ether, and 2,5-diaminobiphenyl (p-PDA), with the dianhydride component of 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) and 3,3′,4,4′-biphenyltetracarboxylic dianhydride, respectively. The physical properties of the membranes were examined, including thermal properties, fractional free volume ( FFV), solubility, and morphological structures, and were compared with the analogues without phenyl pendant. Gas transport properties of the membranes were investigated and discussed from the viewpoint of structure–property relationship. For 6FDA-derived PI membranes, gas permeability increased as the degree of PI backbone rigidity leveled up. Gas transport properties were not improved by the incorporation of phenyl pendant group for 6FDA type containing ether linkage and marginally improved as compared between PI (6FDA/p-PDA) and PI (6FDA/p-phenylenediamine (PDA)). To increase the phenyl substitution density of 6FDA/PDA-type backbone, a novel diamine bearing two phenyl pendant groups, that is, 2,6-diphenyl-1,4-diaminobenzene (p, p′-PDA) was synthesized, and PI derived from 6FDA and p, p′-PDA was prepared. The gas permeability coefficients of PI (6FDA/p, p′-PDA) were remarkably larger than those of PI (6FDA/p-PDA) and PI (6FDA/PDA).


1989 ◽  
Vol 21 (2) ◽  
pp. 127-135 ◽  
Author(s):  
Kazuhiro Tanaka ◽  
Hidetoshi Kita ◽  
Ken-ichi Okamoto ◽  
Asumaru Nakamura ◽  
Yoshihiro Kusuki

2014 ◽  
Vol 17 (8) ◽  
pp. 705-713 ◽  
Author(s):  
Hikaru Maeda ◽  
Yoshihiro Hirata ◽  
Soichiro Sameshima ◽  
Taro Shimonosono

2020 ◽  
Author(s):  
Adlai Katzenberg ◽  
Debdyuti Mukherjee ◽  
Peter J. Dudenas ◽  
Yoshiyuki Okamoto ◽  
Ahmet Kusoglu ◽  
...  

<p>Limitations in fuel cell electrode performance have motivated the development of ion-conducting binders (ionomers) with high gas permeability. Such ionomers have been achieved by copolymerization of perfluorinated sulfonic acid (PFSA) monomers with bulky and asymmetric monomers, leading to a glassy ionomer matrix with chemical and mechanical properties that differ substantially from common PFSA ionomers (e.g., Nafion™). In this study, we use perfluorodioxolane-based ionomers to provide fundamental insights into the role of the matrix chemical structure on the dynamics of structural and transport processes in ion-conducting polymers. Through <i>in-situ</i> water uptake measurements, we demonstrate that ionomer water sorption kinetics depend strongly on the properties and mass fraction of the matrix. As the PFSA mass fraction was increased from 0.26 to 0.57, the Fickian swelling rate constant decreased from 0.8 s<sup>-1</sup> to 0.2 s<sup>-1</sup>, while the relaxation rate constant increased from 3.1×10<sup>-3</sup> s<sup>-1</sup> to 4.0×10<sup>-3</sup>. The true swelling rate, in nm s<sup>-1</sup>, was determined by the chemical nature of the matrix; all dioxolane-containing materials exhibited swelling rates ~1.5 - 2 nm s<sup>-1</sup> compared to ~3 nm s<sup>-1</sup> for Nafion. Likewise, Nafion underwent relaxation at twice the rate of the fastest-relaxing dioxolane ionomer. Reduced swelling and relaxation kinetics are due to limited matrix segmental mobility of the dioxolane-containing ionomers. We demonstrate that changes in conductivity are strongly tied to the polymer relaxation, revealing the decoupled roles of initial swelling and relaxation on hydration, nanostructure, and ion transport in perfluorinated ionomers. </p>


Sign in / Sign up

Export Citation Format

Share Document