biphenyltetracarboxylic dianhydride
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 11)

H-INDEX

24
(FIVE YEARS 3)

Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3742
Author(s):  
Xiaozhou Xu ◽  
Yi Liu ◽  
Bangwei Lan ◽  
Song Mo ◽  
Lei Zhai ◽  
...  

A series of 4-phenylethnylphthalic anhydride (PEPA)-terminated oligoimides were prepared by co-oligomerizing isomeric dianhydrides, i.e., 2,3,3′,4′-biphenyltetracarboxylic dianhydride (a-BPDA), 2,3,3′,4′-benzophenonetetracarboxylic dianhydride (a-BTDA) or 2,3,3′,4′-diphenylethertetracarboxylic dianhydride (a-ODPA), with diamines mixture of bis(4-aminophenoxy)dimethyl silane (APDS) and 2,2′-bis(trifluoromethyl) benzidine (TFDB). The effects of siloxane content and dianhydride structure on the rheological properties of these oligoimides and thermal stability of the corresponding cured polyimide resins were investigated. The results indicated that the introduction of the siloxane structure improved the melt processability of the oligoimides, while the thermal stability of the cured polyimide resins reduced. The oligoimide derived from a-ODPA revealed better melt processability and melt stability due to the existence of a flexible dianhydride structure. The oligoimide PIS-O10 derived from a-ODPA gave the lowest minimum melt viscosity of 0.09 Pa·s at 333 °C and showed the excellent melt stability at 260 °C for 2 h with the melt viscosity in the range of 0.69–1.63 Pa·s. It is also noted that the thermal stability of these resins can be further enhanced by postcuring at 400–450 °C, which is attributed to the almost complete chemical crosslinking of the phenyethynyl combined with oxidative crosslinking of siloxane. The PIS-T10 and PIS-O10 resins that were based on a-BTDA and a-ODPA, respectively, even showed a glass transition temperature over 550 °C after postcuring at 450 °C for 1 h.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 859 ◽  
Author(s):  
Masatoshi Hasegawa ◽  
Tomoaki Hishiki

A series of ester-linked diamines, with different lengths and substituents, was synthesized to obtain poly(ester imide)s (PEsIs) having improved properties. A substituent-free ester-linked diamine (AB-HQ) was poorly soluble in N-methyl-2-pyrrolidone at room temperature, which forced the need for polyaddition by adding tetracarboxylic dianhydride solid into a hot diamine solution. This procedure enabled the smooth progress of polymerization, however, accompanied by a significant decrease in the molecular weights of poly(amic acid)s (PAAs), particularly when using hydrolytically less stable pyromellitic dianhydride. On the other hand, the incorporation of various substituents (–CH3, –OCH3, and phenyl groups) to AB-HQ was highly effective in improving diamine solubility, which enabled the application of the simple polymerization process without the initial heating of the diamine solutions, and led to PAAs with sufficiently high molecular weights. The introduction of bulkier phenyl substituent tends to increase the coefficients of thermal expansion (CTE) of the PEsI films, in contrast to that of the small substituents (–CH3, –OCH3). The effects of ester-linked diamines, consisting of longitudinally further extended structures, were also investigated. However, this approach was unsuccessful due to the solubility problems of these diamines. Consequently, the CTE values of the PEsIs, obtained using longitudinally further extended diamines, were not as low as we had expected initially. The effects of substituent bulkiness on the target properties, and the dominant factors for water uptake (WA) and the coefficients of hygroscopic expansion (CHE), are also discussed in this study. The PEsI derived from methoxy-sustituted AB-HQ analog and 3,3′,4,4′-biphenyltetracarboxylic dianhydride achieved well-balanced properties, i.e., a very high Tg (424 °C), a very low CTE (5.6 ppm K−1), a low WA (0.41%), a very low CHE value (3.1 ppm/RH%), and sufficient ductility, although the 26 μm-thick film narrowly missed certification of the V-0 standard in the UL-94V test. This PEsI film also displayed a moderate εr (3.18) and a low tan δ (3.14 × 10−3) at 10 GHz under 50% RH and at 23 °C. Thus, this PEsI system is a promising candidate as a novel dielectric substrate material for use in the next generation of high-performance flexible printed circuit boards operating at higher frequencies (≥10 GHz).


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 90
Author(s):  
Xiao Wu ◽  
Ganglan Jiang ◽  
Yan Zhang ◽  
Lin Wu ◽  
Yanjiang Jia ◽  
...  

Enhancement of flame retardancy of a colorless and transparent semi-alicyclic polyimide (PI) film was carried out by the incorporation of phosphazene (PPZ) flame retardant (FR). For this purpose, PI-1 matrix was first synthesized from hydrogenated 3,3′,4,4′-biphenyltetracarboxylic dianhydride (HBPDA) and 4,4′-oxydianiline (ODA). The soluble PI-1 resin was dissolved in N,N-dimethylacetamide (DMAc) to afford the PI-1 solution, which was then physically blended with PPZ FR with the loading amounts in the range of 0–25 wt.%. The PPZ FR exhibited good miscibility with the PI-1 matrix when its proportion was lower than 10 wt.% in the composite films. PI-3 composite film with the PPZ loading of 10 wt.% showed an optical transmittance of 75% at the wavelength of 450 nm with a thickness of 50 μm. More importantly, PI-3 exhibited a flame retardancy class of UL 94 VTM-0 and reduced total heat release (THR), heat release rate (HRR), smoke production rate (SPR), and rate of smoke release (RSR) values during combustion compared with the original PI-1 film. In addition, PI-3 film had a limiting oxygen index (LOI) of 30.9%, which is much higher than that of PI-1 matrix (LOI: 20.1%). Finally, incorporation of PPZ FR decreased the thermal stability of the PI films. The 10% weight loss temperature (T10%) and the glass transition temperature (Tg) of the PI-3 film were 411.6 °C and 227.4 °C, respectively, which were lower than those of the PI-1 matrix (T10%: 487.3 °C; Tg: 260.6 °C)


2019 ◽  
Vol 32 (6) ◽  
pp. 620-630
Author(s):  
Keuk-Min Jeong ◽  
Pradip Kumar Tapaswi ◽  
Takehiko Kambara ◽  
Ryohei Ishige ◽  
Shinji Ando ◽  
...  

A new diamine containing an imidazole structure, 4,4′-(4,5-diphenyl-1H-imidazole-1,2-diyl)dianiline (DIMA), was synthesized to prepare photoconductive polyimides (PIs) with four types of dianhydrides such as 3,3′,4,4′-biphenyltetracarboxylic dianhydride, 4,4′-oxyduphthalic anhydride, 4,4′-(hexafluoroisopropylidene) diphthalic anhydride, and cyclobutane-1,2,3,4,-tetracarboxylic dianhydride, based on the fact that the imidazole ring is a useful n-type block with high electron-donating property and good thermal stability. The imidazole-containing diamine possesses high electron-donating properties due to the lone pair electrons at nitrogen, which affords a high hole-transport property. All the PIs prepared from DIMA were amorphous due to the large side group and kink structure of the diamine, optically transparent (transmittances of 92–98% at 450 nm), and exhibited high thermal stability (10% weight loss temperatures ranged 453–558°C).


Polymer ◽  
2019 ◽  
Vol 183 ◽  
pp. 121862 ◽  
Author(s):  
Guangliang Song ◽  
Chao Chen ◽  
Xiaoyu Wang ◽  
Jianan Yao

2019 ◽  
Vol 6 (6) ◽  
pp. 190196 ◽  
Author(s):  
Kai Cheng ◽  
Jie-pin Hu ◽  
Yan-cheng Wu ◽  
Chu-qi Shi ◽  
Zhi-geng Chen ◽  
...  

A novel aromatic diamine containing pyridyl side group, 4-pyridine-4,4-bis(3,5-dimethyl-5-aminophenyl)methane (PyDPM), was successfully synthesized via electrophilic substitution reaction. The polyimides (PIs) containing pyridine were obtained via the microwave-assisted one-step polycondensation of the PyDPM with pyromellitic dianhydride (PMDA), 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA), 3,3′,4,4′-diphenylether tetracarboxylic dianhydride (ODPA) and 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6FDA). Contrarily to the reported similar PIs, these PIs exhibit much higher thermal stability or heat resistance, i.e. high glass transition temperatures ( T g s) in the range of 358–473°C, and the decomposition temperatures at 5% weight loss over 476°C under nitrogen. They can afford flexible and strong films with tensile strength of 82.1–93.3 MPa, elongation at break of 3.7%–15.2%, and Young's modulus of 3.3–3.8 GPa. Furthermore, The PI films exhibit good optical transparency with the cut-off wavelength at 313–366 nm and transmittance higher than 73% at 450 nm. The excellent thermal and optical transmittance can be attributed to synthesis method and the introduction of pyridine rings and ortho-methyl groups. The inherent viscosities of PIs via one-step method were found to be 0.58–1.12 dl g −1 in DMAc, much higher than those via two-step method. These results indicate these PIs could be potential candidates for optical substrates of organic light emitting diodes (OLEDs).


Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 862 ◽  
Author(s):  
Jingfeng Liu ◽  
Weifeng Fan ◽  
Gewu Lu ◽  
Defeng Zhou ◽  
Zhen Wang ◽  
...  

Thermoplastic polyimide (TPI) was synthesized via a traditional one-step method using 2,3,3′,4′-biphenyltetracarboxylic dianhydride (3,4′-BPDA), 4,4′-oxydianiline (4,4′-ODA), and 2,2′-bis(trifluoromethyl)benzidine (TFMB) as the monomers. A series of semi-interpenetrating polymer networks (semi-IPNs) were produced by dissolving TPI in bisphenol A dicyanate (BADCy), followed by curing at elevated temperatures. The curing reactions of BADCy were accelerated by TPI in the blends, reflected by lower curing temperatures and shorter gelation time determined by differential scanning calorimetry (DSC) and rheological measurements. As evidenced by scanning electron microscopy (SEM) images, phase separation occurred and continuous TPI phases were formed in semi-IPNs with a TPI content of 15% and 20%. The properties of semi-IPNs were systematically investigated according to their glass transition temperatures (Tg), thermo-oxidative stability, and dielectric and mechanical properties. The results revealed that these semi-IPNs possessed improved mechanical and dielectric properties compared with pure polycyanurate. Notably, the impact strength of semi-IPNs was 47%–320% greater than that of polycyanurate. Meanwhile, semi-IPNs maintained comparable or even slightly higher thermal resistance in comparison with polycyanurate. The favorable processability and material properties make TPI/BADCy blends promising matrix resins for high-performance composites and adhesives.


2019 ◽  
Vol 32 (1) ◽  
pp. 39-46
Author(s):  
Hongqing Niu ◽  
Mengying Zhang ◽  
Ang Li ◽  
Ziqi Wang ◽  
Xiaodong Wang ◽  
...  

A series of copolyimide (co-PI) fibers containing trifluoromethyl units were successfully obtained on the molecular design of 3,3′,4,4′-biphenyltetracarboxylic dianhydride, p-phenylenediamine, and 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane (HFBAPP) via a widely utilized two-step wet-spinning method. Significant variations on the microstructures and properties of the resulting co-PI fibers were observed after the incorporation of HFBAPP moieties. The tensile strength and initial modulus of the fibers decreased from 0.70 GPa to 0.38 GPa and from 69.63 GPa to 9.60 GPa, respectively. However, the dielectric permittivity decreased from 3.62 to 2.85 in the frequency of 10 MHz as a result of the incorporation of trifluoromethyl units. Two-dimensional wide-angle X-ray diffraction showed that the fibers exhibited highly oriented molecular alignments along the fiber direction and low lateral packing degree in the transverse direction. In addition, the co-PI fibers possessed excellent thermal–oxidative stabilities with the 5% weight loss temperature ranging from 532°C to 552°C under nitrogen atmosphere and the glass transition temperature ranging from 312°C to 330°C.


2019 ◽  
Vol 31 (9-10) ◽  
pp. 1272-1279
Author(s):  
Jinfeng Hu ◽  
Jianhua Wang ◽  
Shengli Qi ◽  
Guofeng Tian ◽  
Dezhen Wu

A series of co-polyimide (co-PI) resins with distorted noncoplanar structure were carefully designed and successfully fabricated by copolycondensation of 2,3,3′,4′-biphenyltetracarboxylic dianhydride, 4,4′-oxydianiline (ODA), and 4,4′-(1,3-phenylenedioxy)dianiline (TPER). As-introduced asymmetric structure endowed these co-PI resins with excellent solubility and relatively low melt viscosity. Molecular simulation and dielectric analysis confirmed that the distorted noncoplanar structure induced a large amount of free volume. The minimum melt viscosity of co-PI resins decreased with increasing TPER content and reached 520 Pa·s at 400°C, indicative of good processability. Besides, the co-PI resins displayed outstanding thermal performance with glass transition temperature ranging from 256°C to 330°C and 5% weight loss temperature higher than 550°C in nitrogen atmosphere. Moreover, the co-PI sheets prepared by compression molding possessed tensile strength of 79.5–91.7 MPa and bending strength of 71.0–81.2 MPa when tuning the TPER/ODA ratio, with lower strengths observed at higher TPER content.


Sign in / Sign up

Export Citation Format

Share Document