Polymeric membranes based on bisphenol-A for gas separations

1989 ◽  
Vol 42 (1-2) ◽  
pp. 69-86 ◽  
Author(s):  
T.A. Barbari ◽  
W.J. Koros ◽  
D.R. Paul
2021 ◽  
Author(s):  
Jason Yang ◽  
Lei Tao ◽  
Jinlong He ◽  
Jeffrey McCutcheon ◽  
Ying Li

Polymer membranes perform innumerable separations with far-reaching environmental implications. Despite decades of research on membrane technologies, design of new membrane materials remains a largely Edisonian process. To address this shortcoming, we demonstrate a generalizable, accurate machine-learning (ML) implementation for the discovery of innovative polymers with ideal separation performance. Specifically, multitask ML models are trained on available experimental data to link polymer chemistry to gas permeabilities of He, H2, O2, N2, CO2, and CH4. We interpret the ML models and extract chemical heuristics for membrane design, through Shapley Additive exPlanations (SHAP) analysis. We then screen over nine million hypothetical polymers through our models and identify thousands of candidates that lie well above current performance upper bounds. Notably, we discover hundreds of never-before-seen ultrapermeable polymer membranes with O2 and CO2 permeability greater than 104 and 105 Barrer, respectively, orders of magnitude higher than currently available polymeric membranes. These hypothetical polymers are capable of overcoming undesirable trade-off relationship between permeability and selectivity, thus significantly expanding the currently limited library of polymer membranes for highly efficient gas separations. High-fidelity molecular dynamics simulations confirm the ML-predicted gas permeabilities of the promising candidates, which suggests that many can be translated to reality.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1292
Author(s):  
Pablo Fernández-Castro ◽  
Alfredo Ortiz ◽  
Daniel Gorri

Hydrogen recovery is at the center of the energy transition guidelines promoted by governments, owing to its applicability as an energy resource, but calls for energetically nonintensive recovery methods. The employment of polymeric membranes in selective gas separations has arisen as a potential alternative, as its established commercial availability demonstrates. However, enhanced features need to be developed to achieve adequate mechanical properties and the membrane performance that allows the obtention of hydrogen with the required industrial purity. Matrimid®, as a polyimide, is an attractive material providing relatively good performance to selectively recover hydrogen. As a consequence, this review aims to study and summarize the main results, mechanisms involved and advances in the use of Matrimid® as a selective material for hydrogen separation to date, delving into membrane fabrication procedures that increase the effectiveness of hydrogen recovery, i.e., the addition of fillers (within which ZIFs have acquired extraordinary importance), chemical crosslinking or polymeric blending, among others.


2013 ◽  
Vol 38 (5) ◽  
pp. 740-766 ◽  
Author(s):  
Cher Hon Lau ◽  
Pei Li ◽  
Fuyun Li ◽  
Tai-Shung Chung ◽  
Donald R. Paul

Author(s):  
R.T. Chen ◽  
M.G. Jamieson ◽  
R. Callahan

“Row lamellar” structures have previously been observed when highly crystalline polymers are melt-extruded and recrystallized under high stress. With annealing to perfect the stacked lamellar superstructure and subsequent stretching in the machine (extrusion) direction, slit-like micropores form between the stacked lamellae. This process has been adopted to produce polymeric membranes on a commercial scale with controlled microporous structures. In order to produce the desired pore morphology, row lamellar structures must be established in the membrane precursors, i.e., as-extruded and annealed polymer films or hollow fibers. Due to the lack of pronounced surface topography, the lamellar structures have typically been investigated by replica-TEM, an indirect and time consuming procedure. Recently, with the availability of high resolution imaging techniques such as scanning tunneling microscopy (STM) and field emission scanning electron microscopy (FESEM), the microporous structures on the membrane surface as well as lamellar structures in the precursors can be directly examined.The materials investigated are Celgard® polyethylene (PE) flat sheet membranes and their film precursors, both as-extruded and annealed, made at different extrusion rates (E.R.).


Author(s):  
E. G. Rightor ◽  
G. P. Young

Investigation of neat polymers by TEM is often thwarted by their sensitivity to the incident electron beam, which also limits the usefulness of chemical and spectroscopic information available by electron energy loss spectroscopy (EELS) for these materials. However, parallel-detection EELS systems allow reduced radiation damage, due to their far greater efficiency, thereby promoting their use to obtain this information for polymers. This is evident in qualitative identification of beam sensitive components in polymer blends and detailed investigations of near-edge features of homopolymers.Spectra were obtained for a poly(bisphenol-A carbonate) (BPAC) blend containing poly(tetrafluoroethylene) (PTFE) using a parallel-EELS and a serial-EELS (Gatan 666, 607) for comparison. A series of homopolymers was also examined using parallel-EELS on a JEOL 2000FX TEM employing a LaB6 filament at 100 kV. Pure homopolymers were obtained from Scientific Polymer Products. The PTFE sample was commercial grade. Polymers were microtomed on a Reichert-Jung Ultracut E and placed on holey carbon grids.


Author(s):  
Lorna K. Mayo ◽  
Kenneth C. Moore ◽  
Mark A. Arnold

An implantable artificial endocrine pancreas consisting of a glucose sensor and a closed-loop insulin delivery system could potentially replace the need for glucose self-monitoring and regulation among insulin dependent diabetics. Achieving such a break through largely depends on the development of an appropriate, biocompatible membrane for the sensor. Biocompatibility is crucial since changes in the glucose sensors membrane resulting from attack by orinter action with living tissues can interfere with sensor reliability and accuracy. If such interactions can be understood, however, compensations can be made for their effects. Current polymer technology offers several possible membranes that meet the unique chemical dynamics required of a glucose sensor. Two of the most promising polymer membranes are polytetrafluoroethylene (PTFE) and silicone (Si). Low-voltage scanning electron microscopy, which is an excellent technique for characterizing a variety of polymeric and non-conducting materials, 27 was applied to the examination of experimental sensor membranes.


Polymer News ◽  
2004 ◽  
Vol 29 (8) ◽  
pp. 253-257
Author(s):  
Tejraj Aminabhavi ◽  
Udaya Toti ◽  
Mahaveer Kurkuri ◽  
Nadagouda Mallikarjuna ◽  
Lakshmi Shetti
Keyword(s):  

2011 ◽  
pp. 053111130856
Author(s):  
Stephen Ritter
Keyword(s):  

2011 ◽  
pp. 062311292128
Author(s):  
Erika Gebel
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document