Spatial models of site index based on climate and soil properties for two boreal tree species in Ontario, Canada

2003 ◽  
Vol 175 (1-3) ◽  
pp. 497-507 ◽  
Author(s):  
Daniel W McKenney ◽  
John H Pedlar
2015 ◽  
Vol 45 (3) ◽  
pp. 325-342 ◽  
Author(s):  
Huiquan Jiang ◽  
Philip J. Radtke ◽  
Aaron R. Weiskittel ◽  
John W. Coulston ◽  
Patrick J. Guertin

As concerns rise over potential effects of greenhouse gas related climate change on terrestrial ecosystems, forest managers require growth and yield modeling capabilities responsive to changing climate conditions. Our goal was to develop prediction models of site index for eastern US forest tree species with climate and soil properties as predictors for use in predicting potential responses of forest productivity to climate change. Species-specific site index data from the USDA Forest Service Forest Inventory and Analysis (FIA) program were linked to contemporary climate data and soil properties mapped in the USDA Soil Survey Geographic (SSURGO) database. Random forest regression tree based ensemble prediction models of site index were constructed based on 37 climate-related and 15 soil attributes. In addition to a species-specific site index, aggregate models were developed for species grouped into two broad categories: conifer (softwood) and hardwood (broadleaved) species groups. Species-specific models based on climate and soil predictors explained the most variation in site index of any models tested (R2= 62.5%, RMSE = 3.2 m). Comparable results were found when grouping species into conifer and hardwood groups (R2= 63.9%, RMSE = 4.6 m for conifers; R2= 35.9%, RMSE = 4.2 m for hardwoods). Model predictions based on multiple global circulation models (GCMs) and Intergovernmental Panel on Climate Change (IPCC) development scenarios were tested for statistical significance using bootstrap resampling methods. Results showed significant increases over the 21st century in mean site index for conifers between +0.5 and +2.4 m. Over the same time period, mean hardwood site index showed decreases of as much as −1.7 m for the scenarios tested. The results demonstrate the utility of using climate and soils data in predicting site index across a large geographic region, and the potential of climate change to alter forest productivity in the eastern US. Additional investigation is needed to interpret spatial patterns and ecological relationships related to predictions from this type of model.


2020 ◽  
Vol 3 (1) ◽  
pp. 40
Author(s):  
Yusuke Matsuoka ◽  
Hiroaki Shirasawa ◽  
Uichi Hayashi ◽  
Kazuhiro Aruga

To promote sustainable timber and forest biomass utilization, this study estimated technically feasible and economically viable availability considering forest regenerations. This study focuses on five prefectures, namely, Aomori, Iwate, Miyagi, Akita, and Yamagata, and considers the trade between these prefectures. The data used in this study include forest registration (tree species and site index) and GIS data (information on roads and subcompartment layers) from the prefectures for private and communal forests. Additionally, this study includes GIS data (subcompartment layers, including tree species) from the Forestry Agency of Japan for national forests as well as 10-m-grid digital elevation models (DEMs) from the Geographical Survey Institute. As a result, supply potentials of timber and forest biomass resources were estimated at 11,388,960 m3/year and 2,277,792 m3/year, respectively. Then, those availabilities were estimated at 1,631,624 m3/year and 326,325 m3/year. Therefore, the rate of availabilities to supply potentials was 14.3%. Since timber production, and wood chip usage from thinned woods and logging residues in 2018 were 4,667,000 m3/year and 889,600 m3/year, respectively, the rates of timber and forest biomass resource availabilities to those values were 35.0% and 36.7%, respectively. Furthermore, the demand was estimated at 951,740 m3/year from 100,000 m3/year with the generation capacity of 5 MW. The rate of forest biomass resource availability versus the demand was 34.2%. The rates were increased to 64.1% with an additional regeneration subsidy, 173.3% with the thinning subsidy, and 181.5% with both subsidies. Thus, the estimated availability with both subsidies met the demand sufficiently in this region.


2015 ◽  
Vol 166 (6) ◽  
pp. 380-388 ◽  
Author(s):  
Pascale Weber ◽  
Caroline Heiri ◽  
Mathieu Lévesque ◽  
Tanja Sanders ◽  
Volodymyr Trotsiuk ◽  
...  

Growth potential and climate sensitivity of tree species in the ecogram for the colline and submontane zone In forestry practice a large amount of empirical knowledge exists about the productivity of individual tree species in relation to site properties. However, so far, only few scientific studies have investigated the influence of soil properties on the growth potential of various tree species along gradients of soil water as well as nutrient availability. Thus, there is a research gap to estimate the productivity and climate sensitivity of tree species under climate change, especially regarding productive sites and forest ad-mixtures in the lower elevations. Using what we call a «growth ecogram», we demonstrate species- and site-specific patterns of mean annual basal area increment and mean sensitivity of ring width (strength of year-to-year variation) for Fagus sylvatica, Quercus spp., Fraxinus excelsior, Picea abies, Abies alba and Pinus sylvestris, based on tree-ring data from 508 (co-)dominant trees on 27 locations. For beech, annual basal area increment ( average 1957–2006) was significantly correlated with tree height of the dominant sampling trees and proved itself as a possible alternative for assessing site quality. The fact that dominant trees of the different tree species showed partly similar growth potential within the same ecotype indicates comparable growth limitation by site conditions. Mean sensitivity of ring width – a measure of climate sensitivity – had decreased for oak and ash, while it had increased in pine. Beech showed diverging reactions with increasing sensitivity at productive sites (as measured by the C:N ratio of the topsoil), suggesting an increasing limitation by climate at these sites. Hence, we derive an important role of soil properties in the response of forests to climate change at lower elevations, which should be taken into account when estimating future forest productivity.


1989 ◽  
Vol 4 (2) ◽  
pp. 52-54 ◽  
Author(s):  
David L. Verbyla ◽  
Richard F. Fisher

Abstract Forest habitat types have been purported to be useful indicators of site quality. This is generally true for habitat types with different dominant tree species. However, few have studied the site indicator value of habitat types with the same dominant tree species. We measured site index (base age 25) from 172 randomly selected plots within the ponderosa pine (Pinus ponderosa) zone of the Dixie National Forest, Utah. The range of site index within any one habitat type was broad. Poor sites occurred on all five habitat types. However, the best sites occurred only on the Pinus ponderosa/Symphoricarpos oreophilus and Pinus ponderosa/Quercus gambelii habitat types. Therefore, habitat type may be useful in predicting the best sites, but only if other site information is used in addition to habitat type. West. J. Appl. For. 4(2):52-54, April 1989.


2009 ◽  
Vol 3 (3) ◽  
pp. 1052-1079 ◽  
Author(s):  
Andrew O. Finley ◽  
Sudipto Banerjee ◽  
Ronald E. McRoberts

1987 ◽  
Vol 17 (12) ◽  
pp. 1565-1571 ◽  
Author(s):  
R. D. Kabzems ◽  
K. Klinka

Relationships between soil properties, understory vegetation, foliar properties, and site index were examined in some Douglas-fir ecosystems on Vancouver Island. Multivariate summaries of variation in understory vegetation and foliar properties were highly correlated with the soil properties (mineralizable N, total N, and exchangeable Ca and Mg) that best characterized soil nutrient regimes of the ecosystems. The increases in soil nutrient availability were correlated with increased foliar N concentrations of the current year foliage. A consistent correlation was found between increased soil nutrient availability (particularly N, Mg, Ca) and decreased foliar Mn and Al. Site index of Douglas-fir was significantly greater on sites with greater quantities of most nutrients (particularly N, Mg, Ca) when sites with equivalent soil moisture regime were compared.


2007 ◽  
Vol 71 (4) ◽  
pp. 1389-1397 ◽  
Author(s):  
A. E. Russell ◽  
J. W. Raich ◽  
O. J. Valverde-Barrantes ◽  
R. F. Fisher

Sign in / Sign up

Export Citation Format

Share Document