Carbohydrates of whole defatted cells as a basis for differentiation between actinobacillus actinomycetemcomitans and haemophilus aphrophilus

Author(s):  
Ilia Brondz ◽  
Ingar Olsen
1980 ◽  
Vol 30 (2) ◽  
pp. 588-600
Author(s):  
S C Holt ◽  
A C Tanner ◽  
S S Socransky

Selected human oral and nonoral strains of the genera Actinobacillus and Haemophilus were examined by transmission and scanning electron microscopy. The strains examined were morphologically identical to recognized Actinobacillus actinomycetemcomitans, Haemophilus aphrophilus, and Haemophilus paraphrophilus. By transmission electron microscopy, the cells were typically gram negative in morphology, with several strains possessing some extracellular ruthenium red-staining polymeric material. Numerous vesicular structures, morphologically identical to lipopolysaccharide vesicles, were seen to originate from and be continuous with the surface of the outer membrane. Large numbers of these vesicles were also found in the external environment. Scanning electron microscopic observations revealed that both actinobacilli and haemophili possessed surface projections and an amorphous surface material which connected and covered adjacent cells.


2006 ◽  
Vol 56 (9) ◽  
pp. 2135-2146 ◽  
Author(s):  
Niels Nørskov-Lauritsen ◽  
Mogens Kilian

The aim of this study was to reinvestigate the relationships and the generic affiliations of the species Actinobacillus actinomycetemcomitans, Haemophilus aphrophilus, Haemophilus paraphrophilus and Haemophilus segnis. The nicotinamide phosphoribosyltransferase gene (nadV) conferring V factor-independent growth was identified in Haemophilus aphrophilus. The gene encodes a polypeptide of 462 amino acids that shows 74.5 % amino acid sequence identity to the corresponding enzyme from Actinobacillus actinomycetemcomitans. Ten isolates of Haemophilus paraphrophilus all carried a nadV pseudogene. DNA from Haemophilus aphrophilus was able to transform Haemophilus paraphrophilus into the NAD-independent phenotype. The transformants carried a full-length nadV inserted in the former locus of the pseudogene. The DNA–DNA relatedness between the type strains of Haemophilus aphrophilus and Haemophilus paraphrophilus was 77 %. We conclude that the division into two species Haemophilus aphrophilus and Haemophilus paraphrophilus is not justified and that Haemophilus paraphrophilus should be considered a later heterotypic synonym of Haemophilus aphrophilus. Forty strains of Actinobacillus actinomycetemcomitans, Haemophilus aphrophilus and Haemophilus segnis were investigated by multilocus sequence analysis. The 40 strains form a monophyletic group clearly separate from other evolutionary lineages of the family Pasteurellaceae. We propose the transfer of Actinobacillus actinomycetemcomitans, Haemophilus aphrophilus and Haemophilus segnis to a new genus Aggregatibacter gen. nov. as Aggregatibacter actinomycetemcomitans comb. nov. (the type species; type strain ATCC 33384T=CCUG 13227T=CIP 52.106T=DSM 8324T=NCTC 9710T), Aggregatibacter aphrophilus comb. nov. (type strain ATCC 33389T=CCUG 3715T=CIP 70.73T=NCTC 5906T) and Aggregatibacter segnis comb. nov. (type strain HK316T=ATCC 33393T=CCUG 10787T=CCUG 12838T=CIP 103292T=NCTC 10977T). The species of the genus Aggregatibacter are independent of X factor and variably dependent on V factor for growth in vitro.


Sign in / Sign up

Export Citation Format

Share Document