The effects of wall and rolling resistance on the couple stress of granular materials in vertical flow

2003 ◽  
Vol 325 (3-4) ◽  
pp. 347-360 ◽  
Author(s):  
H.P Zhu ◽  
A.B Yu
2021 ◽  
Vol 118 (38) ◽  
pp. e2107965118
Author(s):  
Filip Elekes ◽  
Eric J. R. Parteli

The angle of repose—i.e., the angle θr between the sloping side of a heap of particles and the horizontal—provides one of the most important observables characterizing the packing and flowability of a granular material. However, this angle is determined by still poorly understood particle-scale processes, as the interactions between particles in the heap cause resistance to roll and slide under the action of gravity. A theoretical expression that predicts θr as a function of particle size and gravity would have impact in the engineering, environmental, and planetary sciences. Here we present such an expression, which we have derived from particle-based numerical simulations that account for both sliding and rolling resistance, as well as for nonbonded attractive particle–particle interactions (van der Waals). Our expression is simple and reproduces the angle of repose of experimental conical heaps as a function of particle size, as well as θr obtained from our simulations with gravity from 0.06 to 100 times that of Earth. Furthermore, we find that heaps undergo a transition from conical to irregular shape when the cohesive to gravitational force ratio exceeds a critical value, thus providing a proxy for particle-scale interactions from heap morphology.


2013 ◽  
Vol 68 (10) ◽  
pp. 2257-2263 ◽  
Author(s):  
B. Kim ◽  
M. Gautier ◽  
P. Michel ◽  
R. Gourdon

The use of vertical flow constructed wetlands (VFCWs) is well developed in France and other countries for the treatment of wastewaters from small communities. The patented Azoé® process has been developed by a French company, SCIRPE, in order to improve denitrification and phosphorus removal as compared to classical VFCWs. It includes a biological trickling filter pretreatment followed by two stages of partially flooded VFCW. The performances of partially flooded VFCW are well demonstrated for the removal of organic matter and nitrogen. The system is now being considered for phosphorus removal as well. In this article, sludge and granular materials sampled from the filters of a municipal plant where the Azoé® system has been operated for 8 years were analyzed in order to provide data that may contribute to a better understanding of the dynamics of phosphorus retention. Elemental analyses showed that phosphorus was predominantly captured in the sludge layer accumulated at the surface of the first stage. The progressive mineralization of the sludge over time was also clearly highlighted. The phosphate phases were mainly associated with iron and calcium. The transport of phosphorus via the migration of fine particles through the porous medium in the first stage was also observed.


Sign in / Sign up

Export Citation Format

Share Document