A study of variable swirl intake port on 4 valves high speed DI diesel engine — Development of very high swirl helical port with steady state air flow test and 3-dimensional computation Jun-ichi Kawashima, Hiroshi Ogawa, Yukio Matsui (Nissan Motor Co., Ltd.)

JSAE Review ◽  
1997 ◽  
Vol 18 (2) ◽  
pp. 207
1975 ◽  
Author(s):  
M. R. Garde

This paper presents a discussion on aircraft type gas-turbine train development. For railway traction purposes, the turbo-engines used on aircraft would improve the quality of the services provided in the electrified lines. The gas turbine should insure high speed and satisfactory acceleration. It would enable relatively lightweight construction to be carried out and run at a higher speed than trains on non-electrified lines. The gas turbine will not completely replace the diesel engine, but it will enable rolling stock to be constructed for which the diesel is unsuitable, especially in the case of high-speed, lightweight trainsets and, in the future, very high-powered units.


Author(s):  
Amy M. Peterson ◽  
Po-I Lee ◽  
Ming-Chia Lai ◽  
Ming-Cheng Wu ◽  
Craig L. DiMaggio

This paper compares 20% bio-diesel (B20-choice white grease) fuel with baseline ultra low sulfur diesel (ULSD) fuel on the performance of combustion and emissions of a light-duty 4-cylinder 2.8-liter common-rail DI diesel engine. The results show that operating the engine in the Low Temperature Combustion (LTC) regime produces lower PM and NOx with a slight penalty in fuel consumption, THC, and CO emissions. B20, in general, produces less soot. A slight increase in NOx emissions is shown with B20 compared to ULSD, with an exception at the high speed point where B20 has lower NOx values. In addition, the performance and emission characteristics are investigated as a function of the ECU injection strategy. The addition of pilot injections is found to effectively reduce combustion noise and extends the injection retard window to reach LTC combustion regimes with acceptable noise level for LD diesel engines.


2009 ◽  
Vol 137 (2) ◽  
pp. 37-49
Author(s):  
Robin VANHAELST ◽  
Werner HENTSCHEL ◽  
Christian MÜLLER ◽  
Jakub CZAJKA

In this paper the systematic development of an optical swirl sensor to measure the swirl ratio in an operating serial turbocharged DI-diesel engine is described. The optical sensor detects the visible light of the combustion, in particular the emission of the sooting flame in a wavelength range from 600 nm up to 1000 nm. The acceptance angle is so small that the soot clouds from every spray can be detected as they are being turned under the optical sensor by the swirling flow. In a first part the new optical probe method was validated on a transparent engine by comparison with high speed video recordings. In the second part several hardware variations were made on a serial DI-diesel engine which was equipped with a variable swirl valve. The influence of the opened- and closed swirl valve constellation and the piston geometry on the swirl ratio was measured with the optical probe technique. The results were compared with a zero dimensional simulation model. There was a good agreement between the swirl measurements and the 0D-model. The optical swirl sensor has proven to be a powerful tool to optimise the combustion process. Without any modifications on the cylinder head, the effect of application parameters and hardware parts on the swirl strength can be quantified for all engine loads and speeds.


Sign in / Sign up

Export Citation Format

Share Document