scholarly journals FEASIBILITY OF CARDIAC STRAIN ANALYSIS BASED ON FEATURE TRACKING OF TIME RESOLVED CARDIAC COMPUTED TOMOGRAPHY

2014 ◽  
Vol 63 (12) ◽  
pp. A1206
Author(s):  
Wouter Wieringa ◽  
Petter Quick ◽  
Eva Maret ◽  
Jan Engvall
2019 ◽  
Vol 8 (9) ◽  
pp. 1423 ◽  
Author(s):  
Emilija Miskinyte ◽  
Paulius Bucius ◽  
Jennifer Erley ◽  
Seyedeh Mahsa Zamani ◽  
Radu Tanacli ◽  
...  

In this study, we used a single commercially available software solution to assess global longitudinal (GLS) and global circumferential strain (GCS) using cardiac computed tomography (CT) and cardiac magnetic resonance (CMR) feature tracking (FT). We compared agreement and reproducibility between these two methods and the reference standard, CMR tagging (TAG). Twenty-seven patients with severe aortic stenosis underwent CMR and cardiac CT examinations. FT analysis was performed using Medis suite version 3.0 (Leiden, The Netherlands) software. Segment (Medviso) software was used for GCS assessment from tagged images. There was a trend towards the underestimation of GLS by CT-FT when compared to CMR-FT (19.4 ± 5.04 vs. 22.40 ± 5.69, respectively; p = 0.065). GCS values between TAG, CT-FT, and CMR-FT were similar (p = 0.233). CMR-FT and CT-FT correlated closely for GLS (r = 0.686, p < 0.001) and GCS (r = 0.707, p < 0.001), while both of these methods correlated moderately with TAG for GCS (r = 0.479, p < 0.001 for CMR-FT vs. TAG; r = 0.548 for CT-FT vs. TAG). Intraobserver and interobserver agreement was excellent in all techniques. Our findings show that, in elderly patients with severe aortic stenosis (AS), the FT algorithm performs equally well in CMR and cardiac CT datasets for the assessment of GLS and GCS, both in terms of reproducibility and agreement with the gold standard, TAG.


2006 ◽  
Vol 2 (1) ◽  
pp. 40
Author(s):  
Alan S Katz ◽  

Sign in / Sign up

Export Citation Format

Share Document