Enhancement of the convective heat transfer for a reciprocating impinging jet flow

2003 ◽  
Vol 30 (6) ◽  
pp. 825-834 ◽  
Author(s):  
Yuan-Tang Lin ◽  
Ming-Chun Hsu ◽  
Chia-Ta Hsieh
Author(s):  
Chadia Haidar ◽  
Rachid Boutarfa ◽  
Mohamed Sennoune ◽  
Souad Harmand

This work focuses on the numerical and experimental study of convective heat transfer in a rotor of a discoidal the machine with an eccentric impinging jet. Convective heat transfers are determined experimentally in steady state on the surface of a single rotating disk. The experimental technique is based on the use of infrared thermography to access surface temperature measurement, and on the numerical resolution of the energy equation in steady-state, to evaluate local convective coefficients. The results from the numerical simulation are compared with heat transfer experiments for rotational Reynolds numbers between 2.38×105 and 5.44×105 and for the jet's Reynolds numbers ranging from 16.5×103 to 49.6 ×103. A good agreement between the two approaches was obtained in the case of a single rotating disk, which confirms us in the choice of our numerical model. On the other hand, a numerical study of the flow and convective heat transfer in the case of an unconfined rotor-stator system with an eccentric air jet impinging and for a dimensionless spacing G=0.02, was carried out. The results obtained revealed the presence of different heat transfer zones dominated either by rotation only, by the air flow only or by the dynamics of the rotation flow superimposed on that of the air flow. Critical radii on the rotor surface have been identified


1999 ◽  
Vol 121 (2) ◽  
pp. 341-348 ◽  
Author(s):  
H. S. Sheriff ◽  
D. A. Zumbrunnen

Recent investigations have revealed that pulsations in an incident jet flow can be an effective technique for modifying convective heat transfer characteristics. While these studies focused on single impinging jets, industrial applications of impinging jets usually involve arrays of jets. To explore the effects of flow pulsations on the heat transfer performance of jet arrays, an experimental investigation has been performed of instantaneous and time-averaged convective heat transfer to a square, in-line array of circular air jets within an unit cell of the array. Hot-film anemometry was used to document the jet flow field. Instantaneous and time-averaged convective heat transfer rates were measured using a heat flux microsensor. An ensemble averaging technique was used to separate the pulsating component of flow velocity and heat transfer from the turbulent components and thereby assess the effect of flow pulsation on turbulence intensity and heat transfer. For the ranges of parameters considered, results indicate convective heat transfer distributions become more uniform in response to pulsations but heat transfer is not enhanced. Improved uniformity can be a useful aspect in many jet applications.


2020 ◽  
Vol 52 (5) ◽  
pp. 055503
Author(s):  
M Ajmi ◽  
N Hnaien ◽  
S Marzouk ◽  
L Kolsi ◽  
H Ben Aissia ◽  
...  

Author(s):  
Weihong Li ◽  
Xueying Li ◽  
Jing Ren ◽  
Hongde Jiang ◽  
Li Yang ◽  
...  

This study comprehensively illustrates the effect of Reynolds number, hole spacing, jet-to-target distance and hole inclination on the convective heat transfer performance of an impinging jet array. Highly resolved heat transfer coefficient distributions on the target plate are obtained utilizing transient liquid crystal over a range of Reynolds numbers varying between 5,000 and 25,000. Effect of streamwise and spanwise jet-to-jet spacing (X/D, Y/D: 4–8) and jet-to-target plate distance (Z/D: 0.75–3) are employed composing a test matrix of 36 different geometries. Additionally, the effect of hole inclination (θ: 0°–40°) on the heat transfer coefficient is investigated. Optical hole spacing arrangements and impingement distance are pointed out to maximize the area-averaged Nusselt number and minimize the amount of cooling air. Also included is a new correlation, based on that of Florschuetz et al., to predict row-averaged Nusselt number. The new correlation is capable to cover low Z/D∼0.75 and presents better prediction of row-averaged Nusselt number, which proves to be an effective impingement design tool.


2017 ◽  
Vol 80 ◽  
pp. 139-146 ◽  
Author(s):  
Alexandr S. Nebuchinov ◽  
Yuriy A. Lozhkin ◽  
Artur V. Bilsky ◽  
Dmitriy M. Markovich

Sign in / Sign up

Export Citation Format

Share Document