Distribution of genes encoding cholera toxin, zonula occludens toxin, accessory cholera toxin, and El Tor hemolysin Vibrio cholerae of diverse origins

1995 ◽  
Vol 18 (3) ◽  
pp. 231-235 ◽  
Author(s):  
Hisao Kurazono ◽  
Amit Pal ◽  
Prasanta K. Bag ◽  
G. Balakrish Nair ◽  
Tadahiro Karasawa ◽  
...  
2004 ◽  
Vol 186 (5) ◽  
pp. 1355-1361 ◽  
Author(s):  
Joaquín Sánchez ◽  
Gerardo Medina ◽  
Thomas Buhse ◽  
Jan Holmgren ◽  
Gloria Soberón-Chavez

ABSTRACT The regulatory systems controlling expression of the ctxAB genes encoding cholera toxin (CT) in the classical and El Tor biotypes of pathogenic Vibrio cholerae have been characterized and found to be almost identical. Notwithstanding this, special in vitro conditions, called AKI conditions, are required for El Tor bacteria to produce CT. The AKI conditions involve biphasic cultures. In phase 1 the organism is grown in a still tube for 4 h. In phase 2 the medium is poured into a flask to continue growth with shaking. Virtually no expression of CT occurs if this protocol is not followed. Here we demonstrated that CT expression takes place in single-phase still cultures if the volume-to-surface-area ratio is decreased, both under air and under an inert atmosphere. The expression of key genes involved in the regulation of CT production was analyzed, and we found that the expression pattern closely resembles the in vivo expression pattern.


1999 ◽  
Vol 181 (21) ◽  
pp. 6779-6787 ◽  
Author(s):  
Brigid M. Davis ◽  
Harvey H. Kimsey ◽  
William Chang ◽  
Matthew K. Waldor

ABSTRACT CTXφ is a lysogenic, filamentous bacteriophage. Its genome includes the genes encoding cholera toxin (ctxAB), one of the principal virulence factors of Vibrio cholerae; consequently, nonpathogenic strains of V. cholerae can be converted into toxigenic strains by CTXφ infection. O139 Calcutta strains of V. cholerae, which were linked to cholera outbreaks in Calcutta, India, in 1996, are novel pathogenic strains that carry two distinct CTX prophages integrated in tandem: CTXET, the prophage previously characterized within El Tor strains, and a new CTX Calcutta prophage (CTXcalc). We found that the CTXcalc prophage gives rise to infectious virions; thus, CTXETφ is no longer the only known vector for transmission of ctxAB. The most functionally significant differences between the nucleotide sequences of CTXcalcφ and CTXETφ are located within the phages’ repressor genes (rstR calc andrstR ET, respectively) and their RstR operators. RstRcalc is a novel, allele-specific repressor that regulates replication of CTXcalcφ by inhibiting the activity of the rstA calc promoter. RstRcalc has no inhibitory effect upon the classical and El Tor rstA promoters, which are instead regulated by their cognate RstRs. Consequently, production of RstRcalc renders a CTXcalc lysogen immune to superinfection by CTXcalcφ but susceptible (heteroimmune) to infection by CTXETφ. Analysis of the prophage arrays generated by sequentially integrated CTX phages revealed that pathogenic V. cholerae O139 Calcutta probably arose via infection of an O139 CTXETφ lysogen by CTXcalcφ.


2013 ◽  
Vol 57 (8) ◽  
pp. 3950-3959 ◽  
Author(s):  
Hongxia Wang ◽  
Li Zhang ◽  
Anisia J. Silva ◽  
Jorge A. Benitez

ABSTRACTVibrio choleraestrains of serogroups O1 and O139, the causative agents of the diarrheal illness cholera, express a single polar flagellum powered by sodium motive force and require motility to colonize and spread along the small intestine. In a previous study, we described a high-throughput assay for screening for small molecules that selectively inhibit bacterial motility and identified a family of quinazoline-2,4-diamino analogs (Q24DAs) that (i) paralyzed the sodium-driven polar flagellum ofVibriosand (ii) diminished cholera toxin secreted by El Tor biotypeV. cholerae. In this study, we provide evidence that a Q24DA paralyzes the polar flagellum by interacting with the motor protein PomB. Inhibition of motility with the Q24DA enhanced the transcription of the cholera toxin genes in both biotypes. We also show that the Q24DA interacts with outer membrane protein OmpU and other porins to induce envelope stress and expression of the extracellular RNA polymerase sigma factor σE. We suggest that Q24DA-induced envelope stress could affect the correct folding, assembly, and secretion of pentameric cholera toxin in El Tor biotypeV. choleraeindependently of its effect on motility.


Author(s):  
A. Fasano ◽  
B. Baudry ◽  
J. B. Kaper ◽  
C. Ciarla ◽  
L. Ferraro ◽  
...  

2014 ◽  
Vol 2 (4) ◽  
pp. 33-35
Author(s):  
Soroor Erfanimanesh ◽  
Gita Eslami ◽  
Hossein Goudarzi ◽  
Arezou Taherpour ◽  
Ali Hashemi ◽  
...  

1999 ◽  
Vol 67 (1) ◽  
pp. 148-154 ◽  
Author(s):  
Gopal Khetawat ◽  
Rupak K. Bhadra ◽  
Suvobroto Nandi ◽  
Jyotirmoy Das

ABSTRACT The unprecedented genesis of a novel non-O1 Vibrio cholerae strain belonging to serogroup O139, which caused an epidemic in late 1992 in the Indian subcontinent, and its subsequent displacement by El Tor O1 vibrios after 18 months initiated a renewed investigation of the aspects of the organism that are related to pathogenesis. The reappearance of V. cholerae O139 with altered antibiotic sensitivity compared to O139 Bengal (O139B) in late 1996 has complicated the epidemiological scenario of V. cholerae and has necessitated an examination of possible rearrangements in the genome underlying such rapid changes in the phenotypic traits. With a view to investigating whether the phenotypic changes that have occurred are associated with alteration in the genome, the genome of the resurgent V. cholerae O139 (O139R) strains were examined. Pulsed-field gel electrophoresis analysis of NotI- and SfiI-digested genomic DNA of O139R isolates showed restriction fragment length polymorphism including in the cholera toxin (CTX) genetic element locus and with O139B isolates. Analyses of the organization of the CTX genetic elements in O139R strains showed that in contrast to two copies of the elements connected by two direct-repeat sequences (RS) in most of the genomes of O139B isolates, the genomes of all O139R strains examined, except strain AS192, have three such elements connected by a single RS. While the RS present in the upstream of the CTX genetic elements in the genome of O139R is of O139B origin, the RS connecting the cores of the elements has several new restriction sites and has lost theBglII site which is supposed to be conserved in all O1 strains and O139B. The endonuclease I-CeuI, which has sites only in the rrn operons in the genomes of all organisms examined so far, has 10 sites in the genomes of O139R strains, compared to 9 in the genomes of O139B strains. The recent isolates of V. cholerae O139 have thus gained one rrn operon. This variation in the number of rrn operons within a serogroup has not been reported for any other organism. The results presented in this report suggest that like the pathogenic El Tor O1 strains, the genomes of O139 strains are undergoing rapid alterations.


2010 ◽  
Vol 59 (7) ◽  
pp. 763-769 ◽  
Author(s):  
Seon Young Choi ◽  
Je Hee Lee ◽  
Yoon-Seong Jeon ◽  
Hye Ri Lee ◽  
Eun Jin Kim ◽  
...  

Atypical Vibrio cholerae O1 strains – hybrid strains (strains that cannot be classified either as El Tor or classical biotype) and altered strains (El Tor biotype strains that produce classical cholera toxin) – are currently prevalent in Asia and Africa. A total of 74 hybrid and altered strains that harboured classical cholera toxin were investigated by multilocus variable-number tandem repeat analysis (MLVA). The results showed that the hybrid/altered strains could be categorized into three groups and that they were distant from the El Tor strain responsible for the seventh cholera pandemic. Hybrid/altered strains with a tandem repeat of the classical CTX prophage on the small chromosome were divided into two MLVA groups (group I: Mozambique/Bangladesh group; group III: Vietnam group), and altered strains with the RS1–CTX prophage containing the El Tor type rstR and classical ctxB on the large chromosome were placed in two MLVA groups (group II: India/Bangladesh group; group III: India/Vietnam group).


Sign in / Sign up

Export Citation Format

Share Document