extracellular rna
Recently Published Documents


TOTAL DOCUMENTS

187
(FIVE YEARS 73)

H-INDEX

30
(FIVE YEARS 6)

2022 ◽  
Vol 12 ◽  
Author(s):  
Roger P. Alexander ◽  
Robert R Kitchen ◽  
Juan Pablo Tosar ◽  
Matthew Roth ◽  
Pieter Mestdagh ◽  
...  

We now know RNA can survive the harsh environment of biofluids when encapsulated in vesicles or by associating with lipoproteins or RNA binding proteins. These extracellular RNA (exRNA) play a role in intercellular signaling, serve as biomarkers of disease, and form the basis of new strategies for disease treatment. The Extracellular RNA Communication Consortium (ERCC) hosted a two-day online workshop (April 19–20, 2021) on the unique challenges of exRNA data analysis. The goal was to foster an open dialog about best practices and discuss open problems in the field, focusing initially on small exRNA sequencing data. Video recordings of workshop presentations and discussions are available (https://exRNA.org/exRNAdata2021-videos/). There were three target audiences: experimentalists who generate exRNA sequencing data, computational and data scientists who work with those groups to analyze their data, and experimental and data scientists new to the field. Here we summarize issues explored during the workshop, including progress on an effort to develop an exRNA data analysis challenge to engage the community in solving some of these open problems.


2021 ◽  
Author(s):  
Danielle L Michell ◽  
Ryan M Allen ◽  
Ashley B Cavnar ◽  
Danielle M Contreras ◽  
Minzhi Yu ◽  
...  

Extracellular small RNAs (sRNA) are abundant in many biofluids, but little is known about their mechanisms of transport and stability in RNase-rich environments. We previously reported that high-density lipoproteins (HDL) of mice were enriched with multiple classes of sRNA derived from the endogenous transcriptome, but also exogenous organisms. Here, we show that human HDL transports tRNA-derived sRNAs (tDRs) from host and non-host species which were found to be altered in human atherosclerosis. We hypothesized that HDL binds to tDRs through apolipoprotein A-I (apoA-I) and these interactions are conferred by RNA-specific features. We tested this using microscale thermophoresis and electrophoretic mobility shift assays and found that HDL bind tDRs and other single-stranded sRNAs with strong affinity, but not double-stranded RNA or DNA. Natural and synthetic RNA modifications influenced tDR binding to HDL. Reconstituted HDL bound tDRs only in the presence of apoA-I and purified apoA-I alone was sufficient for binding sRNA. Conversely, phosphatidylcholine vesicles did not bind tDRs. In summary, HDL preferentially binds to single-stranded sRNAs likely through non-ionic interactions with apoA-I. These studies highlight binding properties that likely enable extracellular RNA communication and provide a foundation for future studies to manipulate HDL-sRNA for therapeutic approaches to prevent or treat disease.


2021 ◽  
Vol 3 (12) ◽  
Author(s):  
Magdalena Smolarz ◽  
Marcin Zawrotniak ◽  
Dorota Satała ◽  
Maria Rapala-Kozik

Neutrophils represent the first line of innate host defense. The ability to inhibit the development of infections is associated with the involvement of several fighting strategies. The still poorly understood mechanism is netosis, involving the release of Extracellular Neutrophil Traps (NETs). NETs are complexes of chromosomal DNA and granule content. Such a web-like structure inhibits the spread of invaders. Netosis plays a significant role in combating Candida albicans infections. It has been shown that several factors, composing C. albicans cell surface mediate NETs production. However, the development of difficult to eradicate fungal infection is associated with the formation of the biofilm structure, which partially protects the pathogen cells from contact with the host’s immune system. One of the reasons for the creation of a such protective environment is the production of the extracellular matrix (ECM). The major components of the C. albicans ECM layer are lipids, proteins, carbohydrates but also extracellular nucleic acids, among which we observed a significant RNA content. Considering that the ECM consisting of RNA molecules is one of the first lines of contact between biofilms and neutrophils, our current studies aimed to assess the potential role of extracellular RNA in the triggering of the netosis process by human neutrophils in vitro. We showed that RNA purified from C. albicans biofilm structure and the whole cells have the capability to induction of ROS-dependent netosis pathway. Additionally, cell migration analysis indicate that RNA molecules may also be an effective chemotactic agent. This work was supported by NCN (2019/33/B/NZ6/02284).


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260835
Author(s):  
Saumya Bhagat ◽  
Indranil Biswas ◽  
Md Iqbal Alam ◽  
Madiha Khan ◽  
Gausal A. Khan

Myocardial infarction (MI), atherosclerosis and other inflammatory and ischemic cardiovascular diseases (CVDs) have a very high mortality rate and limited therapeutic options. Although the diagnosis is based on markers such as cardiac Troponin-T (cTrop-T), the mechanism of cTrop-T upregulation and release is relatively obscure. In the present study, we have investigated the mechanism of cTrop-T release during acute hypoxia (AH) in a mice model by ELISA & immunohistochemistry. Our study showed that AH exposure significantly induces the expression and release of sterile inflammatory as well as MI markers in a time-dependent manner. We further demonstrated that activation of TLR3 (mediated by eRNA) by AH exposure in mice induced cTrop-T release and Poly I:C (TLR3 agonist) also induced cTrop-T release, but the pre-treatment of TLR3 immuno-neutralizing antibody or silencing of Tlr3 gene or RNaseA treatment two hrs before AH exposure, significantly abrogated AH-induced Caspase 3 activity as well as cTrop-T release. Our immunohistochemistry and Masson Trichrome (MT) staining studies further established the progression of myocardial injury by collagen accumulation, endothelial cell and leukocyte activation and adhesion in myocardial tissue which was abrogated significantly by pre-treatment of RNaseA 2 hrs before AH exposure. These data indicate that AH induced cTrop-T release is mediated via the eRNA-TLR3-Caspase 3 pathway.


Author(s):  
Qin Zhang ◽  
Dennis K. Jeppesen ◽  
James N. Higginbotham ◽  
Ramona Graves-Deal ◽  
Vincent Q. Trinh ◽  
...  

AbstractExtracellular vesicles and exomere nanoparticles are under intense investigation as sources of clinically relevant cargo. Here we report the discovery of a distinct extracellular nanoparticle, termed supermere. Supermeres are morphologically distinct from exomeres and display a markedly greater uptake in vivo compared with small extracellular vesicles and exomeres. The protein and RNA composition of supermeres differs from small extracellular vesicles and exomeres. Supermeres are highly enriched with cargo involved in multiple cancers (glycolytic enzymes, TGFBI, miR-1246, MET, GPC1 and AGO2), Alzheimer’s disease (APP) and cardiovascular disease (ACE2, ACE and PCSK9). The majority of extracellular RNA is associated with supermeres rather than small extracellular vesicles and exomeres. Cancer-derived supermeres increase lactate secretion, transfer cetuximab resistance and decrease hepatic lipids and glycogen in vivo. This study identifies a distinct functional nanoparticle replete with potential circulating biomarkers and therapeutic targets for a host of human diseases.


2021 ◽  
Vol 21 ◽  
pp. S68-S69
Author(s):  
Sridurga Mithraprabhu ◽  
Rachel Morley ◽  
Moashan Chen ◽  
Malarmathy Ramachandran ◽  
Kawa Choi ◽  
...  

FEBS Open Bio ◽  
2021 ◽  
Author(s):  
Yu Ota ◽  
Kenji Takahashi ◽  
Shin Otake ◽  
Yosui Tamaki ◽  
Mitsuyoshi Okada ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Grant K Nation ◽  
Cherie E Saffold ◽  
Heather H Pua

2021 ◽  
Vol 1 (1) ◽  
pp. 17-23
Author(s):  
Karl-Heinz Kogel

The exRNA consortium, a team of researchers funded by the Deutsche Forschungsgemeinschaft (DFG), addresses crucial aspects of cross-kingdom RNA interference (ckRNAi) and RNA application in plant protection, mainly focusing on mechanistic considerations and application efficiencies.


Gut ◽  
2021 ◽  
pp. gutjnl-2021-325036
Author(s):  
Johann von Felden ◽  
Teresa Garcia-Lezana ◽  
Navneet Dogra ◽  
Edgar Gonzalez-Kozlova ◽  
Mehmet Eren Ahsen ◽  
...  

ObjectiveSurveillance tools for early cancer detection are suboptimal, including hepatocellular carcinoma (HCC), and biomarkers are urgently needed. Extracellular vesicles (EVs) have gained increasing scientific interest due to their involvement in tumour initiation and metastasis; however, most extracellular RNA (exRNA) blood-based biomarker studies are limited to annotated genomic regions.DesignEVs were isolated with differential ultracentrifugation and integrated nanoscale deterministic lateral displacement arrays (nanoDLD) and quality assessed by electron microscopy, immunoblotting, nanoparticle tracking and deconvolution analysis. Genome-wide sequencing of the largely unexplored small exRNA landscape, including unannotated transcripts, identified and reproducibly quantified small RNA clusters (smRCs). Their key genomic features were delineated across biospecimens and EV isolation techniques in prostate cancer and HCC. Three independent exRNA cancer datasets with a total of 479 samples from 375 patients, including longitudinal samples, were used for this study.ResultsExRNA smRCs were dominated by uncharacterised, unannotated small RNA with a consensus sequence of 20 nt. An unannotated 3-smRC signature was significantly overexpressed in plasma exRNA of patients with HCC (p<0.01, n=157). An independent validation in a phase 2 biomarker case–control study revealed 86% sensitivity and 91% specificity for the detection of early HCC from controls at risk (n=209) (area under the receiver operating curve (AUC): 0.87). The 3-smRC signature was independent of alpha-fetoprotein (p<0.0001) and a composite model yielded an increased AUC of 0.93.ConclusionThese findings directly lead to the prospect of a minimally invasive, blood-only, operator-independent clinical tool for HCC surveillance, thus highlighting the potential of unannotated smRCs for biomarker research in cancer.


Sign in / Sign up

Export Citation Format

Share Document