Nitric oxide-dependent modification of the sarcoplasmic reticulum Ca-ATPase: localization of cysteine target sites

2000 ◽  
Vol 29 (6) ◽  
pp. 489-496 ◽  
Author(s):  
Rosa I. Viner ◽  
Todd D. Williams ◽  
Christian Schöneich
2009 ◽  
Vol 96 (3) ◽  
pp. 120a-121a ◽  
Author(s):  
Jerry Curran ◽  
Usama Ahmed ◽  
Donald M. Bers ◽  
Mark Ziolo ◽  
Thomas R. Shannon

2001 ◽  
Vol 91 (5) ◽  
pp. 2117-2124 ◽  
Author(s):  
Leo M. A. Heunks ◽  
Herwin A. Machiels ◽  
P. N. Richard Dekhuijzen ◽  
Y. S. Prakash ◽  
Gary C. Sieck

In the present study, we used real-time confocal microscopy to examine the effects of two nitric oxide (NO) donors on acetylcholine (ACh; 10 μM)- and caffeine (10 mM)-induced intracellular calcium concentration ([Ca2+]i) responses in C2C12 mouse skeletal myotubes. We hypothesized that NO reduces [Ca2+]i in activated skeletal myotubes through oxidation of thiols associated with the sarcoplasmic reticulum Ca2+-release channel. Exposure to diethylamine NONOate (DEA-NO) reversibly increased resting [Ca2+]i level and resulted in a dose-dependent reduction in the amplitude of ACh-induced [Ca2+]i responses (25 ± 7% reduction with 10 μM DEA-NO and 78 ± 14% reduction with 100 μM DEA-NO). These effects of DEA-NO were partly reversible after subsequent exposure to dithiothreitol (10 mM). Preexposure to DEA-NO (1, 10, and 50 μM) also reduced the amplitude of the caffeine-induced [Ca2+]i response. Similar data were obtained by using the chemically distinct NO donor S-nitroso- N-acetyl-penicillamine (100 μM). These results indicate that NO reduces sarcoplasmic reticulum Ca2+ release in skeletal myotubes, probably by a modification of hyperreactive thiols present on the ryanodine receptor channel.


1999 ◽  
Vol 128 (4) ◽  
pp. 981-984
Author(s):  
N. P. Aimasheva ◽  
E. B. Malenyuk ◽  
E. B. Manukhina ◽  
G. L. Khaspekov ◽  
V. D. Mikoyan ◽  
...  

2002 ◽  
Vol 92 (2) ◽  
pp. 527-534 ◽  
Author(s):  
Yoshiteru Morio ◽  
Ivan F. McMurtry

Studies of thapsigargin, cyclopiazonic acid, and ryanodine in isolated pulmonary arteries and smooth muscle cells suggest that release of Ca2+ from inositol 1,4,5-trisphosphate (IP3)- and/or ryanodine-sensitive sarcoplasmic reticulum Ca2+ stores is a component of the mechanism of acute hypoxic pulmonary vasoconstriction (HPV). However, the actions of these agents on HPV in perfused lungs have not been reported. Thus we tested effects of thapsigargin and cyclopiazonic acid, inhibitors of sarcoplasmic reticulum Ca2+-ATPase, and of ryanodine, an agent that either locks the ryanodine receptor open or blocks it, on HPV in salt solution-perfused rat lungs. After inhibition of cyclooxygenase and nitric oxide synthase, thapsigargin (10 nM) and cyclopiazonic acid (5 μM) augmented the vasoconstriction to 0% but not to 3% inspired O2. Relatively high concentrations of ryanodine (100 and 300 μM) blunted HPV in nitric oxide synthase-inhibited lungs. The results indicate that release of Ca2+ from the ryanodine-sensitive, but not the IP3-sensitive, store, contributes to the mechanism of HPV in perfused rat lungs and that Ca2+-ATPase-dependent Ca2+ buffering moderates the response to severe hypoxia.


2003 ◽  
Vol 285 (2) ◽  
pp. L296-L304 ◽  
Author(s):  
Christopher J. Mingone ◽  
Sachin A. Gupte ◽  
Takafumi Iesaki ◽  
Michael S. Wolin

Nitric oxide (NO) donors generally relax vascular preparations through cGMP-mediated mechanisms. Relaxation of endothelium-denuded bovine pulmonary arteries (BPA) and coronary arteries to the NO donor S-nitroso- N-acetyl-penicillamine (SNAP) is almost eliminated by inhibition of soluble guanylate cyclase activation with 10 μM 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ), whereas only a modest inhibition of relaxation is observed under hypoxia (PO2 = 8–10 Torr). This effect of hypoxia is independent of the contractile agent used and is also observed with NO gas. ODQ eliminated SNAP-induced increases in cGMP under hypoxia in BPA. cGMP-independent relaxation of BPA to SNAP was not attenuated by inhibition of K+ channels (10 mM tetraethylammonium), myosin light chain phosphatase (0.5 μM microcystin-LR), or adenylate cyclase (4 μM 2′,5′-dideoxyadenosine). SNAP relaxed BPA contracted with serotonin under Ca2+-free conditions in the presence of hypoxia and ODQ, and contraction to Ca2+ readdition was also attenuated. The sarcoplasmic reticulum Ca2+-reuptake inhibitor cyclopiazonic acid (0.2 mM) attenuated SNAP-mediated relaxation of BPA in the presence of ODQ. Thus hypoxic conditions appear to promote a cGMP-independent relaxation of BPA to NO by enhancing sarcoplasmic reticulum Ca2+ reuptake.


1997 ◽  
Vol 272 (1) ◽  
pp. L1-L7 ◽  
Author(s):  
M. S. Kannan ◽  
Y. S. Prakash ◽  
D. E. Johnson ◽  
G. C. Sieck

In the present study, effects of the nitric oxide donor, S-nitroso-N-acetylpenicillamine (SNAP), on sarcoplasmic reticulum (SR) Ca2+ release were examined in freshly dissociated porcine tracheal smooth muscle (TSM) cells. Fura 2-loaded TSM cells were imaged using video fluorescence microscopy. SR Ca2+ release was induced by acetylcholine (ACh), which acts principally through inositol 1,4,5-trisphosphate (IP3) receptors, and by caffeine, which acts principally through ryanodine receptors (RyR). SNAP inhibited ACh-induced SR Ca2+ release at both 0 and 2.5 mM extracellular Ca2+. Degraded SNAP had no effect on ACh-induced SR Ca2+ release. SNAP also inhibited caffeine-induced SR Ca2+ release. ACh-induced Ca2+ influx was not affected by SNAP when SR reloading was blocked by thapsigargin. SNAP also did not affect SR Ca2+ reuptake. The membrane-permeant analogue of guanosine 3',5'-cyclic monophosphate (cGMP), 8-bromo-cGMP, mimicked the effects of SNAP. These results suggest that, in porcine TSM cells, SNAP reduces the intracellular Ca2+ response to ACh and caffeine by inhibiting SR Ca2+ release through both IP3 and RyR, but not by inhibiting influx or repletion of the SR Ca2+ stores. These effects are likely mediated via cGMP-dependent mechanisms.


FEBS Letters ◽  
1998 ◽  
Vol 440 (1-2) ◽  
pp. 218-222 ◽  
Author(s):  
Toshiaki Ishii ◽  
Osamu Sunami ◽  
Noriko Saitoh ◽  
Hideaki Nishio ◽  
Tadayoshi Takeuchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document