scholarly journals Relationship of blood pressure to endothelial nitric oxide synthase (eNOS) gene and plasma nitric oxide (NO) level in African Americans

2002 ◽  
Vol 15 (4) ◽  
pp. A133
Author(s):  
R LI
2007 ◽  
pp. 393-401 ◽  
Author(s):  
DR Dengel ◽  
MD Brown ◽  
RE Ferrell ◽  
TH Reynolds ◽  
MA Supiano

The purpose of the present study was to examine the role of the T-786C endothelial nitric oxide synthase (eNOS) gene polymorphism on changes in renal hemodynamics and blood pressure due to Na(+) loading. Twenty-eight older (63+/-1 years), moderately obese (39+/-2 % fat) hypertensives had their glomerular filtration rate (GFR), renal plasma flow (RPF), blood pressure (BP) and plasma nitric oxide (NO(x)) levels determined after eight days of low (20 mEq) and high (200 mEq) Na(+) diets. The two Na(+) diets were separated by a 1-week washout period. Subjects were genotyped for the eNOS-786 site and were grouped on whether they were homozygous or heterozygous for the C allele (TC+CC, n=13) or only homozygous for the T allele (TT, n=15). The TC+CC genotype group had a significantly greater increase in diastolic (P=0.021) and mean arterial (P=0.018) BP and a significant decline in both RPF (P=0.007) and GFR (P=0.029) compared to the TT genotype group with Na(+) loading. Furthermore, Na(+) loading resulted in a significant (P=0.036) increase in plasma NO(x) in the TT, but not in the TC+CC genotype group as well as a trend (P=0.051) for an increase in urine NO(x) in TC+CC, but not in the TT genotype group. The increase in BP during Na(+) loading in older hypertensives was associated with the eNOS genotype and may be related to changes in renal hemodynamics due to changes in NO metabolism.


Author(s):  
Sarah Abdullah ◽  
Yazun Jarrar ◽  
Hussam Alhawari ◽  
Eyada Abed ◽  
Malek Zihlif

Background: Endothelial nitric oxide synthase (eNOS) plays a major role in the response of antihypercholesterol statin drugs. Genetic polymorphisms in the eNOS gene affect the activity of eNOS and thereby modulate statin response. Objectives: This study investigated the influence of major functional eNOS gene polymorphisms (rs2070744, rs1799983, and rs61722009) on the lipid profile of type 2 diabetes mellitus (T2DM) Jordanian patients treated with atorvastatin. Methods: The sample comprised 103 T2DM patients who attended the diabetes clinic of Jordan University Hospital. The T2DM patients had regularly been taking 20 mg atorvastatin. The atorvastatin response was calculated by measuring the lipid profile before and after three months of atorvastatin treatment. The eNOS genotypes of the subjects were analyzed using polymerase chain reaction (PCR) followed by restriction fragment length polymorphism (RFLP) assay. Results: No significant association was found between eNOS genetic polymorphisms and the response to atorvastatin (ANOVA, p > 0.05). In addition, no significant difference in the frequency of eNOS genotypes was found between T2DM patients and healthy subjects. However, patients with eNOS rs1799983, 4a/4a, and rs61722009 G/G genotypes showed a significantly lower levels of baseline total cholesterol (TC) and low density lipoprotein (LDL) than did patients carrying the rs1799983 4b/4b or rs61722009 T/T genotype (p < 0.05). The eNOS rs1799983 and rs61722009 polymorphisms were in complete linkage disequilibrium (D' = 1). Conclusion: Although no association was found between eNOS genetic polymorphisms and atorvastatin response, there was a significant association between the rs1799983 and rs61722009 genotypes and baselines levels of TC and LDL in Jordanian T2DM patients. These genetic variants affect cholesterol levels and may play a role in the susceptibility to cardiovascular diseases in T2DM patients. Further studies are needed to validate these findings.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Shuangxi Wang ◽  
Jian Xu ◽  
Ping Song ◽  
Yong Wu ◽  
Junhua Zhang ◽  
...  

Objective: GTP cyclohydrolase 1 (GTPCH1) is the rate-limiting enzyme in de novo synthesis of tetrahydrobiopterin (BH4), an essential cofactor for endothelial nitric oxide synthase (eNOS) dictating at least partly, the balance of nitric oxide (NO) and superoxide (O 2 .− ) produced by this enzyme. The aim of this study is to determine the effects of acute inhibition of GTPCH1 on BH4, eNOS function, and blood pressure. Methods: The biopterin content was detected by HPLC. O 2 .− and NO productions were assayed by using DHE and DAF fluorescence respectively. The vessel relaxation was assayed by organ chamber. The blood pressure in wild-type (WT) or eNOS −/− mice was determined by a carotid catheter method. Results: Exposure of bovine or mouse aortic endothelial cells to GTPCH1 inhibitors (10 mM DAHP or 1 mM NAS) for 24 hours or GTPCH1 siRNA transfection significantly reduced both BH4 and NO levels, but increased O 2 .− levels. This increase was abolished by 10 μM L-sepiapterin (BH4 precursor) or 1 mM L-NAME (non-selective NOS inhibitor). Incubation of isolated WT mice aortas with DAHP or NAS for 24 hours impaired acetylcholine-induced endothelium-dependent relaxation, but not endothelium-independent relaxation. Aortas from GTPCH1 siRNA-injected mice, but not their control-siRNA injected mice, also exhibited impaired endothelium-dependent relaxation. Furthermore, GT-PCH1 siRNA injection in mice reduced BH4 levels in aortas, associated with increased aortic levels of O 2 .− , 3-nitrotyrosine, and adhesion molecules (ICAM1 and VCAM1). In addition, an elevated mean, systolic, and diastolic blood pressure was induced by GTPCH1 siRNA injection in vivo , but not control siRNA (mean blood pressure: 114.28±4.48 vs . 136.81±2.45 mmHg) in WT mice. GTPCH1 siRNA was unable to elicit the similar effects in eNOS −/− mice, including increased oxidative stress (O 2 .− , 3-nitrotyrosine, ICAM1, VCAM1) and blood pressure. Finally, sepiapterin supplementation, which had no effect on high blood pressure in eNOS −/− mice, partially reversed GTPCH1 siRNA-induced elevation of systemic blood pressure in WT mice. Conclusion: GTPCH1 via BH4 maintains normal blood pressure and endothelial function by preserving eNOS-dependent NO biosynthesis. This research has received full or partial funding support from the American Heart Association, AHA South Central Affiliate (Arkansas, New Mexico, Oklahoma & Texas).


Sign in / Sign up

Export Citation Format

Share Document