scholarly journals The EGF and FGF Receptors Mediate Neuroglian Function to Control Growth Cone Decisions during Sensory Axon Guidance in Drosophila

Neuron ◽  
2000 ◽  
Vol 28 (3) ◽  
pp. 741-752 ◽  
Author(s):  
Luis García-Alonso ◽  
Susana Romani ◽  
Fernando Jiménez
2018 ◽  
Author(s):  
Mahekta R. Gujar ◽  
Lakshmi Sundararajan ◽  
Aubrie Stricker ◽  
Erik A. Lundquist

AbstractMany axon guidance ligands and their receptors have been identified, but it is still unclear how these ligand-receptor interactions regulate events in the growth cone, such as protrusion and cytoskeletal arrangement, during directed outgrowth in vivo. In this work, we dissect the multiple and complex effects of UNC-6/Netrin on the growth cone. Previous studies showed that in C. elegans, the UNC-6/Netrin receptor UNC-5 regulates growth cone polarity, as evidenced by loss of asymmetric dorsal F-actin localization and protrusion in unc-5 mutants. UNC-5 and another UNC-6/Netrin receptor UNC-40/DCC also regulate the extent of protrusion, with UNC-40/DCC driving protrusion and UNC-5 inhibiting protrusion. In this work we analyze the roles of UNC-6/Netrin, UNC-40/DCC, and UNC-5 in coordinating growth cone F-actin localization, microtubule organization, and protrusion that results in directed outgrowth away from UNC-6/Netrin. We find that a previously-described pathway involving the UNC-73/Trio Rac GEF and UNC-33/CRMP that acts downstream of UNC-5, regulates growth cone dorsal asymmetric F-actin accumulation and protrusion. unc-5 and unc-33 mutants also display excess EBP-2::GFP puncta, suggesting that MT + end accumulation is important in growth cone polarity and/or protrusion. unc-73 Rac GEF mutants did not display excess EBP-2::GFP puncta despite larger and more protrusive growth cones, indicating a MT-independent mechanism to polarize the growth cone and to inhibit protrusion, possibly via actin. Finally, we show that UNC-6/Netrin and UNC-40/DCC are required for excess protrusion in unc-5 mutants, but not for loss of F-actin asymmetry or MT + end accumulation, indicating that UNC-6/Netrin and UNC-40/DCC are required for protrusion downstream of F-actin asymmetry and MT + end entry. Our data suggest a model in which UNC-6/Netrin polarizes the growth cone via UNC-5, and then regulates a balance of pro- and anti-protrusive forces driven by UNC-40 and UNC-5, respectively, that result in directed protrusion and outgrowth.


2007 ◽  
Vol 30 (4) ◽  
pp. 77
Author(s):  
Y. Y. Chen ◽  
C. L. Hehr ◽  
K. Atkinson-Leadbeater ◽  
J. C. Hocking ◽  
S. McFarlane

Background: The growth cone interprets cues in its environment in order to reach its target. We want to identify molecules that regulate growth cone behaviour in the developing embryo. We investigated the role of A disintegrin and metalloproteinase 10 (ADAM10) in axon guidance in the developing visual system of African frog, Xenopus laevis. Methods: We first examined the expression patterns of adam10 mRNA by in situ hybridization. We then exposed the developing optic tract to an ADAM10 inhibitor, GI254023X, in vivo. Lastly, we inhibited ADAM10 function in diencephalic neuroepithelial cells (through which retinal ganglion cell (RGC) axons extend) or RGCs by electroporating or transfecting an ADAM10 dominant negative (dn-adam10). Results: We show that adam10 mRNA is expressed in the dorsal neuroepithelium over the time RGC axons extend towards their target, the optic tectum. Second, pharmacological inhibition of ADAM10 in an in vivo exposed brain preparation causes the failure of RGC axons to recognize their target at low concentrations (0.5, 1 μM), and the failure of the axons to make a caudal turn in the mid-diencephalon at higher concentration (5 μM). Thus, ADAM10 function is required for RGC axon guidance at two key guidance decisions. Finally, molecular inhibition of ADAM10 function by electroporating dn-adam10 in the brain neuroepithelium causes defects in RGC axon target recognition (57%) and/or defects in caudal turn (12%), as seen with the pharmacological inhibitor. In contrast, molecular inhibition of ADAM10 within the RGC axons has no effect. Conclusions: These data argue strongly that ADAM10 acts cell non-autonomously within the neuroepithelium to regulate the guidance of RGC axons. This study shows for the first time that a metalloproteinase acts in a cell non-autonomous fashion to direct vertebrate axon growth. It will provide important insights into candidate molecules that could be used to reform nerve connections if destroyed because of injury or disease. References Hattori M, Osterfield M, Flanagan JG. Regulated cleavage of a contact-mediated axon repellent. Science 2000; 289(5483):1360-5. Janes PW, Saha N, Barton WA, Kolev MV, Wimmer-Kleikamp SH, Nievergall E, Blobel CP, Himanen JP, Lackmann M, Nikolov DB. Adam meets Eph: an ADAM substrate recognition module acts as a molecular switch for ephrin cleavage in trans. Cell 2005; 123(2):291-304. Pan D, Rubin GM. Kuzbanian controls proteolytic processing of Notch and mediates lateral inhibition during Drosophila and vertebrate neurogenesis. Cell 1997; 90(2):271-80.


Cell ◽  
2005 ◽  
Vol 121 (1) ◽  
pp. 4-6 ◽  
Author(s):  
Rüdiger Klein
Keyword(s):  

2019 ◽  
Vol 219 (1) ◽  
Author(s):  
Nicholas P. Boyer ◽  
Laura E. McCormick ◽  
Shalini Menon ◽  
Fabio L. Urbina ◽  
Stephanie L. Gupton

Appropriate axon guidance is necessary to form accurate neuronal connections. Axon guidance cues that stimulate cytoskeletal reorganization within the growth cone direct axon navigation. Filopodia at the growth cone periphery have long been considered sensors for axon guidance cues, yet how they respond to extracellular cues remains ill defined. Our previous work found that the filopodial actin polymerase VASP and consequently filopodial stability are negatively regulated via nondegradative TRIM9-dependent ubiquitination. Appropriate VASP ubiquitination and deubiquitination are required for axon turning in response to the guidance cue netrin-1. Here we show that the TRIM9-related protein TRIM67 outcompetes TRIM9 for interacting with VASP and antagonizes TRIM9-dependent VASP ubiquitination. The surprising antagonistic roles of two closely related E3 ubiquitin ligases are required for netrin-1–dependent filopodial responses, axon turning and branching, and fiber tract formation. We suggest a novel model in which coordinated regulation of VASP ubiquitination by a pair of interfering ligases is a critical element of VASP dynamics, filopodial stability, and axon guidance.


2005 ◽  
Vol 28 (1) ◽  
pp. 141-152 ◽  
Author(s):  
Lars V. Kristiansen ◽  
Emma Velasquez ◽  
Susana Romani ◽  
Sigrid Baars ◽  
Vladimir Berezin ◽  
...  

2017 ◽  
Author(s):  
Mahekta Gujar ◽  
Aubrie M. Stricker ◽  
Erik A. Lundquist

AbstractThe guidance cue UNC-6/Netrin regulates both attractive and repulsive axon guidance. Our previous work showed that in C. elegans, the attractive UNC-6/Netrin receptor UNC-40/DCC stimulates growth cone protrusion, and that the repulsive receptor, an UNC-5/UNC-40 heterodimer, inhibits growth cone protrusion. We have also shown that inhibition of growth cone protrusion downstream of the UNC-5/UNC-40 repulsive receptor involves Rac GTPases, the Rac GTP exchange factor UNC-73/Trio, and the cytoskeletal regulator UNC-33/CRMP, which mediates Semaphorin-induced growth cone collapse in other systems. The multidomain flavoprotein monooxygenase (FMO) MICAL also mediates growth cone collapse in response to Semaphorin by directly oxidizing F-actin, resulting in depolymerization. The C. elegans genome does not encode a multidomain MICAL-like molecule, but does encode five flavin monooxygenases (FMO-1, -2, -3, -4, and 5) and another molecule, EHBP-1, similar to the non-FMO portion of MICAL.Here we show that FMO-1, FMO-4, FMO-5, and EHBP-1 may play a role in UNC-6/Netrin directed repulsive guidance mediated through UNC-40 and UNC-5 receptors. Mutations in fmo-1, fmo-4, fmo-5, and ehbp-1 showed VD/DD axon guidance and branching defects, and variably enhanced unc-40 and unc-5 VD/DD guidance defects. Developing growth cones in vivo of fmo-1, fmo-4, fmo-5, and ehbp-1 mutants displayed excessive filopodial protrusion, and transgenic expression of FMO-5 inhibited growth cone protrusion. Mutations suppressed growth cone inhibition caused by activated UNC-40 and UNC-5 signaling, and activated Rac GTPase CED-10 and MIG-2, suggesting that these molecules are required downstream of UNC-6/Netrin receptors and Rac GTPases. From these studies, we conclude that FMO-1, FMO-4, FMO-5, and EHBP-1 represent new players downstream of UNC-6/Netrin receptors and Rac GTPases that inhibit growth cone filopodial protrusion in repulsive axon guidance.Author SummaryMolecular mechanisms of axon repulsion mediated by UNC-6/Netrin are not well understood. Inhibition of growth cone lamellipodial and filopodial protrusion is critical to repulsive axon guidance. Previous work identified a novel pathway involving Rac GTPases and the cytoskeletal interacting molecule UNC-33/CRMP required for UNC-6/Netrin-mediated inhibition of growth cone protrusion. In other systems, CRMP mediates growth cone collapse in response to semaphorin. Here we demonstrate a novel role of flavoprotein monooxygenases (FMOs) in repulsive axon guidance and inhibition of growth cone protrusion downstream of UNC-6/Netrin signaling and Rac GTPases. In Drosophila and vertebrates, the multidomain MICAL FMO mediates semaphorin-dependent growth cone collapse by direct oxidation and depolymerization of F-actin. The C. elegans genome does not encode a multidomain MICAL-like molecule, and we speculate that the C. elegans FMOs might have an equivalent role downstream of UNC-6/Netrin signaling. Indeed, we show that EHBP-1, similar to the non-FMO portion of MICAL, also controls repulsive axon guidance and growth cone inhibition, suggesting that in C. elegans, the functions of the multidomain MICAL molecule might be distributed across different molecules. In sum, we show conservation of function of molecules involved in semaphorin growth cone collapse with inhibition of growth cone protrusion downstream of UNC-6/Netrin signaling.


Sign in / Sign up

Export Citation Format

Share Document