Annealing behavior of submicrometer grained ferrite in a low carbon steel fabricated by severe plastic deformation

2002 ◽  
Vol 334 (1-2) ◽  
pp. 79-86 ◽  
Author(s):  
Kyung-Tae Park ◽  
Dong Hyuk Shin
2010 ◽  
Vol 667-669 ◽  
pp. 1009-1014 ◽  
Author(s):  
Farzad Khodabakhshi ◽  
Mohsen Kazeminezhad ◽  
Mohammad Azarnush ◽  
Seyyed Hossein Miran

There are many works on annealing process of SPDed bulk metals but there are limited works on annealing process of SPDed sheets. Therefore, in this study the annealing response after constrained groove pressing (CGP) of low carbon steel sheets has been investigated. These sheets are subjected to severe plastic deformation at room temperature by CGP method up to three passes. Nano-structured low carbon steel sheets produced by severe plastic deformation are annealed at temperature range of 100 to 600 °C for 20 min. The microstructural changes after deformation and annealing are studied by optical microscopy. The effects of CGP strain and annealing temperature on microstructure, strength and hardness evolutions of the nano-scale grained low carbon steel are examined. The results show that annealing phenomena can effectively improve the elongation of process sheets with preserving the hardness and mechanical strength. Also, a thermal stability of microstructure can be observed with annealing at a temperature range of 375–425 °C and 400 °C is achieved as an optimum annealing temperature. Microstructure after post-annealing at temperatures of higher than 600 °C shows abnormal grain growth.


2005 ◽  
Vol 475-479 ◽  
pp. 133-136 ◽  
Author(s):  
Xin Min Fan ◽  
Bosen Zhou ◽  
Lin Zhu ◽  
Heng Zhi Wang ◽  
Jie Wen Huang

In this paper, the circulation rolling plastic deformation(CRPD) surface nanocrystallization technology is proposed based on the idea that the severe plastic deformation can induce grain refinement. The equipment of CRPD is designed and manufactured. A nanocrystallization surface layer was successfully obtained in a column sample of low carbon steel. The average grain size in the top surface layer is about 18 nm, and gradually increases with the distance from the surface. The hardness increases gradually from about 200HV0.1 in the matrix to about 600HV0.1 in the surface layer.


Sign in / Sign up

Export Citation Format

Share Document