Solid state 29Si magic angle spinning NMR: investigation of bond formation and crystallinity of silicon and graphite powder mixtures during high energy milling

1998 ◽  
Vol 255 (1-2) ◽  
pp. 39-48 ◽  
Author(s):  
Xiangqun Xie ◽  
Zhenguo Yang ◽  
Ruiming Ren ◽  
Leon L. Shaw
Soil Research ◽  
1996 ◽  
Vol 34 (2) ◽  
pp. 251 ◽  
Author(s):  
JO Skjemstad ◽  
P Clarke ◽  
JA Taylor ◽  
JM Oades ◽  
SG Mcclure

The nature of organic carbon in the < 2, 2–20, 20–53, 53–200, and 200–2000 mu m fractions of four surface soils was determined using solid state 13C nuclear magnetic resonance (n.m.r.) spectroscopy with cross polarisation and magic angle spinning (CP/MAS). Analyses were repeated after high energy ultraviolet photo-oxidation was performed on the three finest fractions. All four soils, studied contained appreciable amounts of physically protected carbon while three of the soils contained even higher amounts of charcoal. It was not possible to measure the charcoal content of soils directly, however, after photo-oxidation, charcoal remained and was identified by its wood-like morphology revealed by scanning electron microscopy (SEM) together with a highly aromatic chemistry determined by solid state 13C n.m.r. Charcoal appears to be the major contributor to the 130 ppm band seen in the n.m.r. spectra of many Australian soils. By using the aromatic region in the n.m.r. spectra, an approximate assessment of the charcoal distribution through the size fractions demonstrated that more than 88% of the charcoal present in two of the soils occurred in the < 53 �m fractions. These soils contained up to 0.8 g C as charcoal per 100 g of soil and up to 30% of the soil carbon as charcoal. Humic acid extractions performed on soil fractions before and after photo-oxidation suggest that charcoal or charcoal-derived material may also contribute significantly to the aromatic signals found in the n.m.r. spectra of humic acids. Finely divided charcoal appears to be a major constituent of many Australian soils and probably contributes significantly to the inert or passive organic carbon pool recognised in carbon turnover models.


2021 ◽  
Vol 2 (1) ◽  
pp. 39-48
Author(s):  
Nguyen H. H. Phuc ◽  
Takaki Maeda ◽  
Tokoharu Yamamoto ◽  
Hiroyuki Muto ◽  
Atsunori Matsuda

A solid solution of a 100Li3PS4·xLi3PO4 solid electrolyte was easily prepared by liquid-phase synthesis. Instead of the conventional solid-state synthesis methods, ethyl propionate was used as the reaction medium. The initial stage of the reaction among Li2S, P2S5 and Li3PO4 was proved by ultraviolet-visible spectroscopy. The powder X-ray diffraction (XRD) results showed that the solid solution was formed up to x = 6. At x = 20, XRD peaks of Li3PO4 were detected in the prepared sample after heat treatment at 170 °C. However, the samples obtained at room temperature showed no evidence of Li3PO4 remaining for x = 20. Solid phosphorus-31 magic angle spinning nuclear magnetic resonance spectroscopy results proved the formation of a POS33− unit in the sample with x = 6. Improvements of ionic conductivity at room temperature and activation energy were obtained with the formation of the solid solution. The sample with x = 6 exhibited a better stability against Li metal than that with x = 0. The all-solid-state half-cell employing the sample with x = 6 at the positive electrode exhibited a better charge–discharge capacity than that employing the sample with x = 0.


2016 ◽  
Vol 4 (34) ◽  
pp. 13183-13193 ◽  
Author(s):  
Ryohei Morita ◽  
Kazuma Gotoh ◽  
Mika Fukunishi ◽  
Kei Kubota ◽  
Shinichi Komaba ◽  
...  

We examined the state of sodium electrochemically inserted in HC prepared at 700–2000 °C using solid state Na magic angle spinning (MAS) NMR and multiple quantum (MQ) MAS NMR.


Sign in / Sign up

Export Citation Format

Share Document