Rigid–plastic finite element analysis of hydroforming process and its applications

2003 ◽  
Vol 139 (1-3) ◽  
pp. 187-194 ◽  
Author(s):  
Li-Ping Lei ◽  
Jeong Kim ◽  
Sung-Jong Kang ◽  
Beom-Soo Kang
2014 ◽  
Vol 970 ◽  
pp. 177-184 ◽  
Author(s):  
Wen Chiet Cheong ◽  
Heng Keong Kam ◽  
Chan Chin Wang ◽  
Ying Pio Lim

A computational technique of rigid-plastic finite element method by using the Eulerian meshing method was developed to deal with large deformation problem in metal forming by replacing the conventional way of applying complicated remeshing schemes when using the Lagrange’s elements. During metal forming process, a workpiece normally undergoes large deformation and causes severe distortion of elements in finite element analysis. The distorted element may lead to instability in numerical calculation and divergence of non-linear solution in finite element analysis. With Eulerian elements, the initial elements are generated to fix into a specified analytical region with particles implanted as markers to form the body of a workpiece. The particles are allowed to flow between the elements after each deformation step to show the deforming pattern of material. Four types of cold forging and sheet metal clinching were conducted to investigate the effectiveness of the presented method. The proposed method is found to be effective by comparing the results on dimension of the final product, material flow behaviour and punch load versus stroke obtained from simulation and experiment.


2008 ◽  
Vol 575-578 ◽  
pp. 1139-1144 ◽  
Author(s):  
Chan Chin Wang

A simulator based on rigid-plastic finite element method is developed for simulating the plastic flow of material in forging processes. In the forging process likes backward extrusion, a workpiece normally undergoes large deformation around the tool corners that causes severe distortion of elements in finite element analysis. Since the distorted elements may induce instability of numerical calculation and divergence of nonlinear solution in finite element analysis, a computational technique of using the Euler’s fixed meshing method is proposed to deal with large deformation problem by replacing the conventional way of applying complicated remeshing schemes when using the Lagrange’s elements. With this method, the initial elements are generated to fix into a specified analytical region with particles implanted as markers to form the body of a workpiece. The particles are allowed to flow between the elements after each deformation step to show the deforming pattern of material. The proposed method is found to be effective in simulating complicated material flow inside die cavity which has many sharp edges, and also the extrusion of relatively slender parts like fins. In this paper, the formulation of rigid-plastic finite element method based on plasticity theory for slightly compressible material is introduced, and the advantages of the proposed method as compared to conventional one are discussed.


2012 ◽  
Vol 588-589 ◽  
pp. 80-83
Author(s):  
W.F. Fan ◽  
J.H. Li ◽  
F. Li

This paper has established geometry model of the rigid-plastic Finite Element Model (FEM) basing on the foundation of similarity theory. It has simulated and analyzed the material of ASTM-Gr.D used by finite element analysis software of metal plastic DEFORM with different negative clearance values blanking, which obtains the caver of the different negative clearance values with roll-over with sheared zone with punching load. According to the result of simulation, it has made an experiment on the ASTM-Gr.D of 2.0(mm) thickness with the different negative clearance, and obtained samples with sheared well and no burr, which summarized that it could achieve no burr in fine blanking when the values of negative clearances value took -0.1 ~ -0.3mm.


Sign in / Sign up

Export Citation Format

Share Document