Seasonal evolution of sea ice and oceanic heat flux in the Weddell Sea

2000 ◽  
Vol 27 (1-3) ◽  
pp. 37-52 ◽  
Author(s):  
B. Petit ◽  
A. Norro
2020 ◽  
Vol 33 (18) ◽  
pp. 8107-8123 ◽  
Author(s):  
Igor V. Polyakov ◽  
Tom P. Rippeth ◽  
Ilker Fer ◽  
Matthew B. Alkire ◽  
Till M. Baumann ◽  
...  

AbstractA 15-yr duration record of mooring observations from the eastern (>70°E) Eurasian Basin (EB) of the Arctic Ocean is used to show and quantify the recently increased oceanic heat flux from intermediate-depth (~150–900 m) warm Atlantic Water (AW) to the surface mixed layer and sea ice. The upward release of AW heat is regulated by the stability of the overlying halocline, which we show has weakened substantially in recent years. Shoaling of the AW has also contributed, with observations in winter 2017–18 showing AW at only 80 m depth, just below the wintertime surface mixed layer, the shallowest in our mooring records. The weakening of the halocline for several months at this time implies that AW heat was linked to winter convection associated with brine rejection during sea ice formation. This resulted in a substantial increase of upward oceanic heat flux during the winter season, from an average of 3–4 W m−2 in 2007–08 to >10 W m−2 in 2016–18. This seasonal AW heat loss in the eastern EB is equivalent to a more than a twofold reduction of winter ice growth. These changes imply a positive feedback as reduced sea ice cover permits increased mixing, augmenting the summer-dominated ice-albedo feedback.


1985 ◽  
Vol 6 ◽  
pp. 171-173 ◽  
Author(s):  
M. P. Langleben

Heat budget studies of the sea ice cover near Pond Inlet, NWT, were made using data obtained at two locations in Eclipse Sound, one about 0.5 km from shore and the other about 7.5 km from shore. The observations at intervals of one week included ice temperatures at 10 cm separation in vertical profile, salinities of adjacent 2.5 cm-thick slices from vertical ice cores, and ice thickness. The time series analysed extend from three to six months in the six data sets obtained for three winters of observations. Values of oceanic heat flux have been determined as residuals in the energy balance equation applied to the ice cover. The results show that in Eclipse Sound the oceanic heat flux is a significant component of the heat budget of the ice cover. Its value over the winter is typically about 6 W m-2about half as large as the average rate of release of the latent heat of freezing. There does not appear to be any systematic variation in value of the 4 week-average oceanic heat flux during the season. Nor is there any apparent correlation of oceanic heat flux with rate of release of latent heat (ie ice growth rate), or with the severity of the winter as measured by the magnitude of the conductive heat flux.


2015 ◽  
Vol 29 (1) ◽  
pp. 331-346 ◽  
Author(s):  
Steffen Tietsche ◽  
Ed Hawkins ◽  
Jonathan J. Day

Abstract Uncertainty of Arctic seasonal to interannual predictions arising from model errors and initial state uncertainty has been widely discussed in the literature, whereas the irreducible forecast uncertainty (IFU) arising from the chaoticity of the climate system has received less attention. However, IFU provides important insights into the mechanisms through which predictability is lost and hence can inform prioritization of model development and observations deployment. Here, the authors characterize how internal oceanic and surface atmospheric heat fluxes contribute to the IFU of Arctic sea ice and upper-ocean heat content in an Earth system model by analyzing a set of idealized ensemble prediction experiments. It is found that atmospheric and oceanic heat flux are often equally important for driving unpredictable Arctic-wide changes in sea ice and surface water temperatures and hence contribute equally to IFU. Atmospheric surface heat flux tends to dominate Arctic-wide changes for lead times of up to a year, whereas oceanic heat flux tends to dominate regionally and on interannual time scales. There is in general a strong negative covariance between surface heat flux and ocean vertical heat flux at depth, and anomalies of lateral ocean heat transport are wind driven, which suggests that the unpredictable oceanic heat flux variability is mainly forced by the atmosphere. These results are qualitatively robust across different initial states, but substantial variations in the amplitude of IFU exist. It is concluded that both atmospheric variability and the initial state of the upper ocean are key ingredients for predictions of Arctic surface climate on seasonal to interannual time scales.


1997 ◽  
Vol 25 ◽  
pp. 269-275 ◽  
Author(s):  
Cathleen A. Geiger ◽  
Stephen F. Ackley ◽  
William D. Hibler

Using a dynamic-thermodynamic numerical sea-ice model, external oceanic and atmospheric forcings on sea ice in the Weddell Sea are examined to identify physical processes associated with the seasonal cycle of pack ice, and to identify further the parameters that coupled models need to consider in predicting the response of the pack ice to climate and ocean-circulation changes. In agreement with earlier studies, the primary influence on the winter ice-edge maximum extent is air temperature. Ocean heat flux has more impact on the minimum ice-edge extent and in reducing pack-ice thickness, especially in the eastern Weddell Sea. Low relative humidity enhances ice growth in thin ice and open-water regions, producing a more realistic ice edge along the coastal areas of the western Weddell Sea where dry continental air has an impact. The modeled extent of the Weddell summer pack is equally sensitive to ocean heat flux and atmospheric relative humidity variations with the more dynamic responses being from the atmosphere. Since the atmospheric regime in the eastern Weddell is dominated by marine intrusions from lower latitudes, with high humidity already, it is unlikely that either the moisture transport could be further raised or that it could be significantly lowered because of its distance from the continent (the lower humidity source). Ocean heat-transport variability is shown to lead to overall ice thinning in the model response and is a known feature of the actual system, as evidenced by the occurrence of the Weddell Polynya in the mid 1970s.


1985 ◽  
Vol 6 ◽  
pp. 171-173
Author(s):  
M. P. Langleben

Heat budget studies of the sea ice cover near Pond Inlet, NWT, were made using data obtained at two locations in Eclipse Sound, one about 0.5 km from shore and the other about 7.5 km from shore. The observations at intervals of one week included ice temperatures at 10 cm separation in vertical profile, salinities of adjacent 2.5 cm-thick slices from vertical ice cores, and ice thickness. The time series analysed extend from three to six months in the six data sets obtained for three winters of observations. Values of oceanic heat flux have been determined as residuals in the energy balance equation applied to the ice cover. The results show that in Eclipse Sound the oceanic heat flux is a significant component of the heat budget of the ice cover. Its value over the winter is typically about 6 W m-2 about half as large as the average rate of release of the latent heat of freezing. There does not appear to be any systematic variation in value of the 4 week-average oceanic heat flux during the season. Nor is there any apparent correlation of oceanic heat flux with rate of release of latent heat (ie ice growth rate), or with the severity of the winter as measured by the magnitude of the conductive heat flux.


2010 ◽  
Vol 37 (1) ◽  
pp. n/a-n/a ◽  
Author(s):  
Rebecca A. Woodgate ◽  
Tom Weingartner ◽  
Ron Lindsay

1990 ◽  
Vol 14 ◽  
pp. 315-318 ◽  
Author(s):  
J.S. Wettlaufer ◽  
N. Untersteiner ◽  
R. Colony

All studies and models of air—sea-ice interactions suffer from a paucity of information about the oceanic heat flux, which exerts a controlling influence on the sea-ice energy and mass balance. The role of the oceanic heat flux in the sea-ice energy and mass balance is discussed. The performance of ice-ocean models depends on a satisfactory specification of this rarely measured oceanic parameter. A method for determining the oceanic heat flux by measuring the temperatures and thickness of sea ice is described. The results obtained using this method and the data collected during the fall of 1988 in the eastern Arctic are presented. Values of the oceanic heat flux ranging from 0 to 37 W m−2 were estimated from observations taken in the region north-east of Fram Strait. The oceanic heat flux in this region varied in both time and space.


2020 ◽  
Vol 33 (8) ◽  
pp. 3001-3018 ◽  
Author(s):  
Sam Sherriff-Tadano ◽  
Ayako Abe-Ouchi

AbstractDuring glacial periods, climate varies between two contrasting modes, the interstadials and stadials. These climate changes are often associated with drastic reorganizations of the Atlantic meridional overturning circulation (AMOC). Previous studies highlight the important role of sea ice in maintaining contrasting modes of the AMOC through its insulating effect on the oceanic heat flux and the buoyancy flux (sea ice–buoyancy flux feedback); however, the effect of feedback from the atmosphere remains unclear. Here, the effect of sea ice–surface wind interactions over the North Atlantic Ocean on the AMOC is explored. For this purpose, results from comprehensive atmosphere–ocean coupled general circulation models (AOGCMs) are analyzed. Then, sensitivity experiments are conducted with the atmospheric component of the AOGCM. Last, to explore the impact of modifications in surface winds induced by sea ice on the maintenance of the AMOC, partially coupled experiments are conducted with the AOGCMs. Experiments show that the expansion of sea ice associated with a weakening of the AMOC reduces surface winds by suppressing the oceanic heat flux and increasing the atmospheric static stability. This wind anomaly then causes a weakening of the wind-driven ocean salt transport to the northern North Atlantic and maintains the weak AMOC, therefore working as a positive feedback. It is shown that, together with the sea ice–buoyancy flux and sea ice–surface wind feedback, changes in sea ice and oceanic heat flux sustain the contrasting modes of the AMOC. These results may provide useful information for interpreting the differences in the self-sustained internal oscillations of the AMOC produced by recent AOGCMs.


1997 ◽  
Vol 25 ◽  
pp. 269-275 ◽  
Author(s):  
Cathleen A. Geiger ◽  
Stephen F. Ackley ◽  
William D. Hibler

Using a dynamic-thermodynamic numerical sea-ice model, external oceanic and atmospheric forcings on sea ice in the Weddell Sea are examined to identify physical processes associated with the seasonal cycle of pack ice, and to identify further the parameters that coupled models need to consider in predicting the response of the pack ice to climate and ocean-circulation changes. In agreement with earlier studies, the primary influence on the winter ice-edge maximum extent is air temperature. Ocean heat flux has more impact on the minimum ice-edge extent and in reducing pack-ice thickness, especially in the eastern Weddell Sea. Low relative humidity enhances ice growth in thin ice and open-water regions, producing a more realistic ice edge along the coastal areas of the western Weddell Sea where dry continental air has an impact. The modeled extent of the Weddell summer pack is equally sensitive to ocean heat flux and atmospheric relative humidity variations with the more dynamic responses being from the atmosphere. Since the atmospheric regime in the eastern Weddell is dominated by marine intrusions from lower latitudes, with high humidity already, it is unlikely that either the moisture transport could be further raised or that it could be significantly lowered because of its distance from the continent (the lower humidity source). Ocean heat-transport variability is shown to lead to overall ice thinning in the model response and is a known feature of the actual system, as evidenced by the occurrence of the Weddell Polynya in the mid 1970s.


Sign in / Sign up

Export Citation Format

Share Document