P.3.072 Bifeprunox: a novel partial agonist for the D2 receptor with antagonistic capabilities depending on dopaminergic tone

2005 ◽  
Vol 15 ◽  
pp. S486 ◽  
2018 ◽  
Vol 115 (21) ◽  
pp. E4890-E4899 ◽  
Author(s):  
Qiaoling Cui ◽  
Qian Li ◽  
Hongyan Geng ◽  
Lei Chen ◽  
Nancy Y. Ip ◽  
...  

The ability to abandon old strategies and adopt new ones is essential for survival in a constantly changing environment. While previous studies suggest the importance of the prefrontal cortex and some subcortical areas in the generation of strategy-switching flexibility, the fine neural circuitry and receptor mechanisms involved are not fully understood. In this study, we showed that optogenetic excitation and inhibition of the prelimbic cortex–nucleus accumbens (NAc) pathway in the mouse respectively enhances and suppresses strategy-switching ability in a cross-modal spatial-egocentric task. This ability is dependent on an intact dopaminergic tone in the NAc, as local dopamine denervation impaired the performance of the animal in the switching of tasks. In addition, based on a brain-slice preparation obtained from Drd2-EGFP BAC transgenic mice, we demonstrated direct innervation of D2 receptor-expressing medium spiny neurons (D2-MSNs) in the NAc by prelimbic cortical neurons, which is under the regulation by presynaptic dopamine receptors. While presynaptic D1-type receptor activation enhances the glutamatergic transmission from the prelimbic cortex to D2-MSNs, D2-type receptor activation suppresses this synaptic connection. Furthermore, manipulation of this pathway by optogenetic activation or administration of a D1-type agonist or a D2-type antagonist could restore impaired task-switching flexibility in mice with local NAc dopamine depletion; this restoration is consistent with the effects of knocking down the expression of specific dopamine receptors in the pathway. Our results point to a critical role of a specific prelimbic cortex–NAc subpathway in mediating strategy abandoning, allowing the switching from one strategy to another in problem solving.


2021 ◽  
Vol 3 (1) ◽  
pp. 033-040
Author(s):  
Keiko Ikemoto

The latest psychopharmacological study showed effectiveness of a novel non-D2-receptor-binding drug, SEP-363856, for the treatment of schizophrenia. Characteristic receptor profile of the compound is shown to be trace amine-associated receptor 1 (TAAR1) full agonist and 5-hydroxytryptamin 1A (5-HT 1A) receptor partial agonist. I found the TAAR1 ligand neuron, D-neuron, in the striatum and nucleus accumbens (Acc), an antipsychotic acting site, of human brain, though failed to find in the homologous area of monkey. To study human D-neuron functions, total of 154 post-mortem brains, and a modified immunohistochemical method using high qualified antibodies against monoamine-related substances, was applied. Number of D-neurons in the caudate nucleus, putamen, and Acc was reduced in post-mortem brains with schizophrenia. The reduction was significant (p<0.05) in Acc. “D-cell hypothesis of schizophrenia”, which I proposed based on this post-mortem brain study, that NSC dysfunction-induced D-neuron reduction as cellular and molecular basis of mesolimbic dopamine (DA) hyperactivity, showing progressive pathophysiology of schizophrenia, has been proved to be a predictive hypothesis for TAAR1 medicinal chemistry.


2014 ◽  
Vol 79 (2) ◽  
pp. 175-183 ◽  
Author(s):  
Liliana Ostopovici-Halip ◽  
Ramona Rad-Curpan

The dopaminic receptors have been for long time the major targets for developing new small molecules with high affinity and selectivity to treat psychiatric disorders, neurodegeneration, drug abuse, and other therapeutic areas. In the absence of a 3D structure for the human D2 dopamine (HDD2) receptor, the efforts for discovery and design of new potential drugs rely on comparative models generation, docking and pharmacophore development studies. To get a better understanding of the HDD2 receptor binding site and the ligand-receptor interactions a homology model of HDD2 receptor based on the X-ray structure of ?2-adrenergic receptor has been built and used to dock a set of partial agonists of HDD2 receptor. The main characteristics of the binding mode for the HDD2 partial agonists set are given by the ligand particular folding and a complex network of contacts represented by stacking interactions, salt bridge and hydrogen bond formation. The characterization of the partial agonist binding mode at HDD2 receptor provide the needed information to generate pharmacophore models which represent essential information in the future virtual screening studies in order to identify new potential HDD2 partial agonists.


2012 ◽  
Vol 16 (2) ◽  
pp. 445-458 ◽  
Author(s):  
Jack Bergman ◽  
Rebecca A. Roof ◽  
Cheryse A. Furman ◽  
Jennie L. Conroy ◽  
Nancy K. Mello ◽  
...  

Abstract Converging lines of evidence indicate that elevations in synaptic dopamine levels play a pivotal role in the reinforcing effects of cocaine, which are associated with its abuse liability. This evidence has led to the exploration of dopamine receptor blockers as pharmacotherapy for cocaine addiction. While neither D1 nor D2 receptor antagonists have proven effective, medications acting at two other potential targets, D3 and D4 receptors, have yet to be explored for this indication in the clinic. Buspirone, a 5-HT1A partial agonist approved for the treatment of anxiety, has been reported to also bind with high affinity to D3 and D4 receptors. In view of this biochemical profile, the present research was conducted to examine both the functional effects of buspirone on these receptors and, in non-human primates, its ability to modify the reinforcing effects of i.v. cocaine in a behaviourally selective manner. Radioligand binding studies confirmed that buspirone binds with high affinity to recombinant human D3 and D4 receptors (∼98 and ∼29 nm respectively). Live cell functional assays also revealed that buspirone, and its metabolites, function as antagonists at both D3 and D4 receptors. In behavioural studies, doses of buspirone that had inconsistent effects on food-maintained responding (0.1 or 0.3 mg/kg i.m.) produced a marked downward shift in the dose–effect function for cocaine-maintained behaviour, reflecting substantial decreases in self-administration of one or more unit doses of i.v. cocaine in each subject. These results support the further evaluation of buspirone as a candidate medication for the management of cocaine addiction.


2017 ◽  
Vol 235 (1) ◽  
pp. 99-108 ◽  
Author(s):  
Emilia Tarland ◽  
Robert T. Franke ◽  
Heidrun Fink ◽  
Heinz H. Pertz ◽  
Jan Brosda

2006 ◽  
Vol 552 (1-3) ◽  
pp. 36-45 ◽  
Author(s):  
Julia N. Heinrich ◽  
Julie Brennan ◽  
Margaret H. Lai ◽  
Kelly Sullivan ◽  
Geoff Hornby ◽  
...  

2021 ◽  
Author(s):  
Anni Richter ◽  
Lieke de Boer ◽  
Marc Guitart-Masip ◽  
Gusalija Behnisch ◽  
Constanze I. Seidenbecher ◽  
...  

Dopaminergic neurotransmission plays a pivotal role in appetitively motivated behavior in mammals, including humans. Notably, action and valence are not independent in motivated tasks, and it is particularly difficult for humans to learn the inhibition of an action to obtain a reward. We have previously observed that the carriers of the DRD2/ANKK1 TaqIA A1 allele, that has been associated with reduced striatal dopamine D2 receptor expression, showed a diminished learning performance when required to learn response inhibition to obtain rewards, a finding that was replicated in two independent cohorts. In the present study, we first report a replication of this finding in a third independent cohort of 99 participants. Interestingly, after combining all three cohorts (total N = 281), exploratory analyses regarding the COMT Val108/158Met polymorphism suggest that homozygotes for the Met allele, which has been linked to higher prefrontal dopaminergic tone, show a lower learning bias. Our results corroborate the importance of genetic variability of the dopaminergic system in individual learning differences of action-valence interaction and, furthermore, suggest that motivational learning biases are differentially modulated by genetic determinants of striatal and prefrontal dopamine function.


2021 ◽  
pp. 1-45
Author(s):  
Tetsuro Kikuchi ◽  
Kenji Maeda ◽  
Sakiko Yamada ◽  
Mikio Suzuki ◽  
Tsuyoshi Hirose ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document