scholarly journals Erratum to “Identification of a developmentally regulated protein tyrosine phosphatase in embryonic stem cells that is a marker of pluripotential epiblast and early mesoderm” [Mech. Dev. 59 (1996) 153–164]

1997 ◽  
Vol 61 (1-2) ◽  
pp. 213-215
2016 ◽  
Vol 425 (1-2) ◽  
pp. 95-102
Author(s):  
Zahra Shokati Eshkiki ◽  
Mohammad Hossein Ghahremani ◽  
Parisa Shabani ◽  
Sattar Gorgani Firuzjaee ◽  
Asie Sadeghi ◽  
...  

1996 ◽  
Vol 91 (2) ◽  
pp. 304-307 ◽  
Author(s):  
Wouter G. van Inzen ◽  
Maikel P. Peppelenbosch ◽  
Maria W.M. van den Brand ◽  
Leon G.J. Tertoolen ◽  
Siegfried de Laat

Blood ◽  
2011 ◽  
Vol 117 (7) ◽  
pp. 2157-2165 ◽  
Author(s):  
Xinqiang Huang ◽  
Eric Gschweng ◽  
Ben Van Handel ◽  
Donghui Cheng ◽  
Hanna K. A. Mikkola ◽  
...  

Abstract MicroRNAs (miRs) play an important role in cell differentiation and maintenance of cell identity, but relatively little is known of their functional role in modulating human hematopoietic lineage differentiation. Human embryonic stem cells (hESCs) provide a model system to study early human hematopoiesis. We differentiated hESCs by embryoid body (EB) formation and compared the miR expression profile of undifferentiated hESCs to CD34+ EB cells. miRs-126/126* were the most enriched of the 7 miRs that were up-regulated in CD34+ cells, and their expression paralleled the kinetics of hematopoietic transcription factors RUNX1, SCL, and PU.1. To define the role of miRs-126/126* in hematopoiesis, we created hESCs overexpressing doxycycline-regulated miRs-126/126* and analyzed their hematopoietic differentiation. Induction of miRs-126/126* during both EB differentiation and colony formation reduced the number of erythroid colonies, suggesting an inhibitory role of miRs-126/126* in erythropoiesis. Protein tyrosine phosphatase, nonreceptor type 9 (PTPN9), a protein tyrosine phosphatase that is required for growth and expansion of erythroid cells, is one target of miR-126. PTPN9 restoration partially relieved the suppressed erythropoiesis caused by miRs-126/126*. Our results define an important function of miRs-126/126* in negative regulation of erythropoiesis, providing the first evidence for a role of miR in hematopoietic differentiation of hESCs.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Chen Kan ◽  
Fan Yang ◽  
Siying Wang

Stem cells, including embryonic stem cells (ESCs) and adult stem cells, play a central role in mammal organism development and homeostasis. They have two unique properties: the capacity for self-renewal and the ability to differentiate into many specialized cell types. Src homology region 2- (SH2-) containing protein tyrosine phosphatase 2 (SHP-2), a nonreceptor protein tyrosine phosphatase encoded by protein tyrosine phosphatase nonreceptor type 11 gene (PTPN11), regulates multicellular differentiation, proliferation, and survival through numerous conserved signal pathways. Gain-of-function (GOF) or loss-of-function (LOF) SHP2 in various cells, especially for stem cells, disrupt organism self-balance and lead to a plethora of diseases, such as cancer, maldevelopment, and excessive hyperblastosis. However, the exact mechanisms of SHP2 dysfunction in stem cells remain unclear. In this review, we intended to raise the attention and clarify the framework of SHP2-mediated signal pathways in various stem cells. Establishment of integrated signal architecture, from ESCs to adult stem cells, will help us to understand the changes of dynamic, multilayered pathways in response to SHP2 dysfunction. Overall, better understanding the functions of SHP2 in stem cells provides a new avenue to treat SHP2-associated diseases.


Reproduction ◽  
2008 ◽  
Vol 136 (4) ◽  
pp. 423-432 ◽  
Author(s):  
Mi-Young Son ◽  
Janghwan Kim ◽  
Hyo-Won Han ◽  
Sun-Mi Woo ◽  
Yee Sook Cho ◽  
...  

Complex signaling pathways operate in human embryonic stem cells (hESCs) and are coordinated to maintain self-renewal and stem cell characteristics in them. Protein tyrosine kinases (PTKs) participate in diverse signaling pathways in various types of cells. Because of their functions as key molecules in various cellular processes, PTKs are anticipated to have important roles also in hESCs. In this study, we investigated the roles of PTKs in undifferentiated and differentiated hESCs. To establish comprehensive PTK expression profiles in hESCs, we performed reverse transcriptase PCR using degenerate primers according to the conserved catalytic PTK motifs in both undifferentiated and differentiated hESCs. Here, we identified 42 different kinases in two hESC lines, including 5 non-receptor tyrosine kinases (RTKs), 24 RTKs, and 13 dual and other kinases, and compared the protein kinase expression profiles of hESCs and retinoic acid-treated hESCs. Significantly, up- and downregulated kinases in undifferentiated hESCs were confirmed by real-time PCR and western blotting. MAP3K3, ERBB2, FGFR4, and EPHB2 were predominantly upregulated, while CSF1R, TYRO3, SRC, and GSK3A were consistently downregulated in two hESC lines. Western blot analysis showed that the transcriptional levels of these kinases were consistent with the translational levels. The obstruction of upregulated kinases’ activities using specific inhibitors disturbed the undifferentiated status and induced the differentiation of hESCs. Our results support the dynamic expression of PTKs during hESC maintenance and suggest that specific PTKs that are consistently up- and downregulated play important roles in the maintenance of stemness and the direction of differentiation of hESCs.


Sign in / Sign up

Export Citation Format

Share Document