scholarly journals Exosomal microRNA ‐139‐5p from mesenchymal stem cells accelerates trophoblast cell invasion and migration by motivation of the ERK / MMP ‐2 pathway via downregulation of protein tyrosine phosphatase

2020 ◽  
Vol 46 (12) ◽  
pp. 2561-2572
Author(s):  
Huijie Liu ◽  
Fang Wang ◽  
Ying Zhang ◽  
Yanling Xing ◽  
Qian Wang
Author(s):  
Hongmei Dong ◽  
Chaoyu Xie ◽  
Yuchen Jiang ◽  
Kai Li ◽  
Yusheng Lin ◽  
...  

Tumor-derived exosomes, containing multiple nucleic acids and proteins, have been implicated to participate in the interaction between tumor cells and microenvironment. However, the functional involvement of phosphatases in tumor-derived exosomes is not fully understood. We and others previously demonstrated that protein tyrosine phosphatase receptor type O (PTPRO) acts as a tumor suppressor in multiple cancer types. In addition, its role in tumor immune microenvironment remains elusive. Bioinformatical analyses revealed that PTPRO was closely associated with immune infiltration, and positively correlated to M1-like macrophages, but negatively correlated to M2-like macrophages in breast cancer tissues. Co-cultured with PTPRO-overexpressing breast cancer cells increased the proportion of M1-like tumor-associated macrophages (TAMs) while decreased that of M2-like TAMs. Further, we observed that tumor-derived exosomal PTPRO induced M1-like macrophage polarization, and regulated the corresponding functional phenotypes. Moreover, tumor cell-derived exosomal PTPRO inhibited breast cancer cell invasion and migration, and inactivated STAT signaling in macrophages. Our data suggested that exosomal PTPRO inhibited breast cancer invasion and migration by modulating macrophage polarization. Anti-tumoral effect of exosomal PTPRO was mediated by inactivating STAT family in macrophages. These findings highlight a novel mechanism of tumor invasion regulated by tumor-derived exosomal tyrosine phosphatase, which is of translational potential for the therapeutic strategy against breast cancer.


2010 ◽  
Vol 299 (5) ◽  
pp. C1144-C1152 ◽  
Author(s):  
Hidehisa Shimizu ◽  
Yoshimi Nakagawa ◽  
Chie Murakami ◽  
Naohito Aoki ◽  
Shokei Kim-Mitsuyama ◽  
...  

Vascular smooth muscle cell (VSMC) proliferation and migration and vascular endothelial cell (VEC) dysfunction are closely associated with the development of atherosclerosis. We previously demonstrated that protein tyrosine phosphatase ε M (PTPεM) promotes VEC survival and migration. The present study investigates the biological functions of PTPεM in VSMCs and determines whether PTPεM is implicated in diabetes-accelerated atherosclerosis. We overexpressed wild-type and inactive PTPεM and an small interfering RNA (siRNA) of PTPεM by using an adenovirus vector to investigate the effects of PTPεM upon platelet-derived growth factor (PDGF)- and high glucose (HG)-induced responses of rat VSMCs in vitro. We found that PTPεM decreased PDGF-induced DNA synthesis and migration by reducing the phosphorylation level of the PDGF β-receptor (PDGFRβ) with subsequently suppressed H2O2 generation. The HG content in the medium generated H2O2, upregulated PDGFRβ expression and its tyrosine-phosphorylation, and elevated NADPH oxidase 1 (Nox1) expression even without exogenous PDGF, all of which were downregulated by PTPεM. The PDGFR inhibitor AG1296 also blocked HG-induced Nox1 expression and H2O2 production. Moreover, HG suppressed PTPεM expression itself, which was blocked by the antioxidant N-acetyl-l-cysteine. The effects of PTPεM siRNA were the opposite of those of wild-type PTPεM. Therefore, PTPεM negatively regulates PDGFRβ-mediated signaling pathways that are crucial for the pathogenesis of atherosclerosis, and PTPεM may be involved in diabetes-accelerated atherosclerosis.


2016 ◽  
Vol 425 (1-2) ◽  
pp. 95-102
Author(s):  
Zahra Shokati Eshkiki ◽  
Mohammad Hossein Ghahremani ◽  
Parisa Shabani ◽  
Sattar Gorgani Firuzjaee ◽  
Asie Sadeghi ◽  
...  

1996 ◽  
Vol 91 (2) ◽  
pp. 304-307 ◽  
Author(s):  
Wouter G. van Inzen ◽  
Maikel P. Peppelenbosch ◽  
Maria W.M. van den Brand ◽  
Leon G.J. Tertoolen ◽  
Siegfried de Laat

Sign in / Sign up

Export Citation Format

Share Document