Influence of microstructure on microwave dielectric properties of ZnTa2O6 ceramics with low dielectric loss

2002 ◽  
Vol 337 (1-2) ◽  
pp. 303-308 ◽  
Author(s):  
Akinori Kan ◽  
Hirotaka Ogawa ◽  
Hitoshi Ohsato
2015 ◽  
Vol 26 (10) ◽  
pp. 7719-7722 ◽  
Author(s):  
Guo-Guang Yao ◽  
Cui-Jin Pei ◽  
Jian-Gang Xu ◽  
Peng Liu ◽  
Jian-Ping Zhou ◽  
...  

2011 ◽  
Vol 326 ◽  
pp. 127-130
Author(s):  
Xian Li Huang ◽  
Fu Ping Wang ◽  
Ying Song

In the present work, the microstructure and microwave dielectric properties of BaTi4O9 ceramics derived from a sol-gel precursor were presented. Density measuring results demonstrated that the largest densities of ceramic sample about 96.7% could be reached by virtue of a cool iso-static press and a sintering process at at 1300 °C for 6 hours. The dielectric constant (εr), quality factor (Q×f) and the temperature coefficients (τf) of the BaTi4O9 ceramic samples were 36.65, 28000 GHz, +20.2 ppm/°C, respectively. XRD, SEM and XPS were used to characterize the microstructure of the ceramics samples. Substantial Ti3+ was proposed to be the cause of dielectric loss.


2016 ◽  
Vol 185 ◽  
pp. 432-435 ◽  
Author(s):  
Xianpei Huang ◽  
Fei Liu ◽  
Changlai Yuan ◽  
Xinyu Liu ◽  
Jingjing Qu ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Asad Ali ◽  
Sarir Uddin ◽  
Madan Lal ◽  
Abid Zaman ◽  
Zafar Iqbal ◽  
...  

AbstractSn-doped BaTi4O9 (BT4) dielectric ceramics were prepared by a mixed oxide route. Preliminary X-ray diffraction (XRD) structural study shows that the ceramic samples have orthorhombic symmetry with space group (Pnmm). Scanning electron microscopy (SEM) shows that the grain size of the samples decreases with an increase in Sn4+ content. The presence of the metal oxide efficient group was revealed by Fourier transform infrared (FTIR) spectroscopy. The photoluminescence spectra of the ceramic samples reported red color ~ 603, 604, 606.5 and 605 nm with excitation energy ~ 2.06, 2.05, 2.04 and 2.05 eV for Sn4+ content with x = 0.0, 0.3, 0.5, and 0.7, respectively. The microwave dielectric properties of these ceramic samples were investigated by an impedance analyzer. The excellent microwave dielectric properties i.e. high dielectric constant (εr = 57.29), high-quality factor (Qf = 11,852), or low-dielectric loss (3.007) has been observed.


2006 ◽  
Vol 45 ◽  
pp. 2332-2336
Author(s):  
Ki Hyun Yoon ◽  
Ji Won Choi

The microwave dielectric properties of (300-X) nm MgTiO3/(X) nm CaTiO3 thin films have been investigated with correlation between the interface and stress induced by dielectric layers with heattreatment. As the thickness (X) of CaTiO3 film increased, the dielectric constant increased and the temperature coefficient of the dielectric constant changed from the positive to the negative values by the dielectric mixing rule. The dielectric loss of (300-X) nm MgTiO3/(X) nm CaTiO3 thin films increased with an increase of the thickness (X) of CaTiO3 film because of higher thermal stress induced by the higher thermal expansion coefficient of CaTiO3 than that of MgTiO3.


Sign in / Sign up

Export Citation Format

Share Document