Assessing the environmental impact of two options for small-scale wastewater treatment: comparing a reedbed and an aerated biological filter using a life cycle approach

2003 ◽  
Vol 20 (4) ◽  
pp. 297-308 ◽  
Author(s):  
Andrew Dixon ◽  
Matthew Simon ◽  
Tom Burkitt
2019 ◽  
Vol 79 (6) ◽  
pp. 1102-1112 ◽  
Author(s):  
Sheetal Kamble ◽  
Anju Singh ◽  
Absar Kazmi ◽  
Markus Starkl

Abstract Life cycle assessment (LCA) was used to evaluate the environmental impacts associated with wastewater treatment plants (WWTPs). Moreover, an economic evaluation was also addressed using life cycle cost (LCC) approach. Emissions associated with electricity production for operating the WWTPs, emissions from the treated effluent and hazardous heavy metals emissions have been identified as the main contributors to the overall environmental impact. Among the WWTPs considered, soil biotechnology (SBT) obtained the lowest environmental impact in all the evaluated impact categories, except for eutrophication potential. While the aerated lagoons (AL) system presented the worst results due to the high electricity and chemicals consumption. Moreover, the results obtained from the evaluation of benefit from treated effluent reuse clearly indicate that there is a drop in the toxicity potential when the rate of effluent reuse is increased. On the other hand, the present worth of SBT was estimated to be Rs. 40 million/millions of litres per day (MLD) which is the highest as compared to other technologies. Membrane bioreactor (MBR) is the second highest (Rs. 24.7 million/MLD), which is mainly contributed by civil, electro-mechanical and membrane cost. The results of LCA and LCC provide specific insights about the factors which play a major role during the life cycle of wastewater treatment technology and its associated impacts.


2021 ◽  
Author(s):  
Angela Serra ◽  
Martina Malarco ◽  
Alessandro Musacchio ◽  
Giulio Buia ◽  
Pietro Bartocci ◽  
...  

Abstract Additive manufacturing (AM hereinafter) is revolutionizing prototyping production and even small-scale manufacturing. Usually it is assumed that AM has lower environmental impact, compared to traditional manufacturing processes, but there have been no comprehensive environmental life-cycle assessment studies confirming this, especially for the gas turbines (GT hereinafter) and turbomachinery sector. In this study the core processes performed at Baker Hughes site in Florence are considered, together with the powder production via atomization process to describe the overall environmental impact of a GT shroud produced through additive manufacturing and comparing it with traditional investment casting production process. Particular attention is given to materials production and logistics. The full component life cycle starts from the extraction of raw materials during mining, their fusion and, as said, the atomization process, the powders are transported to the gas turbines production site where they are used as base material in additive manufacturing, also machining and finishing processes are analyzed as they differ for a component produced by AM respect to one produced by traditional investment casting. From the analysis of the data obtained, it emerges that the AM process has better performances in terms of sustainability than the Investment casting (IC hereinafter), highlighted above all by a decrease in greenhouse gas emissions (GHG hereinafter) of over 40%.


2019 ◽  
Vol 11 (3) ◽  
pp. 856 ◽  
Author(s):  
Milena Stevanovic ◽  
Karen Allacker ◽  
Stéphane Vermeulen

With the aim of moving towards a more sustainable society, hospital buildings are challenged to decrease their environmental impact while continuing to offer affordable and qualitative medical care. The aim of this paper was to gain insight into the main drivers of the environmental impacts and costs of healthcare facilities, and to identify methodological obstacles for a quantitative assessment. More specifically, the objective was to assess the environmental and financial impacts of the general hospital Sint Maarten in Mechelen (Belgium) by using a life cycle approach. The hospital building was analyzed based on a combination of a simplified life cycle assessment and life cycle costing. The “MMG+_KULeuven” assessment tool was used for the calculation of environmental impacts and financial costs. The study revealed that the environmental impact was mainly caused by electricity use for appliances and lighting, cleaning processes, material production, and spatial heating, while building construction and electricity use caused the highest financial costs. The most relevant impact categories identified were global warming, eutrophication, acidification, human toxicity (cancer and non-cancer effects), and particulate matter. Various methodological challenges were identified, such as the adaptation of existing methods to ensure applicability to hospital buildings and the extraction of data from a Revit model.


2020 ◽  
Vol 25 (10) ◽  
pp. 1930-1941
Author(s):  
Benjamin Fritz ◽  
Carin Aichele ◽  
Mario Schmidt

Abstract Purpose The gold routes satisfying the global gold supply are mining (74%), recycling of high-value gold (23%), and electronic scraps (3%). Besides its applications in the investment, jewelry, and industrial sector, gold also has a bad image. The gold production in industrial as well as artisanal and small-scale mines creates negative impacts such as resource depletion, extensive chemical use, toxic emissions, high energy consumption, and social concerns that are of great importance. On the other hand, almost all gold is recycled and has historically always been. In common life cycle assessment (LCA) databases, there is no data on recycling of high-value gold available. This article attempts to answer the question what the ecological benefits of this recycling are. Method In this study, we were able to collect process data on the most commonly used high-value gold scrap recycling process, the aqua regia method, from several state-of-the-art German refineries. With this data, life cycle inventories were created and a life cycle model was produced to finally generate life cycle impacts of high-value gold scrap recycling. Results This study contains the corresponding inventories and thus enables other interested parties to use these processes for their own LCA studies. The results show that high-value gold scrap recycling has a considerably lower environmental impact than electronic gold scrap recycling and mining. For example, high-value gold scrap recycling in Germany results in a cumulative energy demand (CED) of 820 MJ and a global warming potential (GWP) of 53 kg-CO2-Eq. per kg gold. In comparison, common datasets indicate CED and GWP levels of nearly 8 GJ and 1 t-CO2-Eq. per kg gold, respectively, for electronic scrap recycling and levels of 240 GJ and 16 t-CO2-Eq. per kg gold, respectively, for mining. Conclusion The results show that buying gold from precious metal recycling facilities with high technological standards and a reliable origin of the recycling material is about 300 times better than primary production.


Sign in / Sign up

Export Citation Format

Share Document