Role of the primary auditory cortex in auditory selective attention studied by whole-head neuromagnetometer

1998 ◽  
Vol 7 (2) ◽  
pp. 99-109 ◽  
Author(s):  
Naohito Fujiwara ◽  
Takashi Nagamine ◽  
Makoto Imai ◽  
Tomohiro Tanaka ◽  
Hiroshi Shibasaki
2001 ◽  
Vol 85 (6) ◽  
pp. 2350-2358 ◽  
Author(s):  
Sanjiv K. Talwar ◽  
Pawel G. Musial ◽  
George L. Gerstein

Studies in several mammalian species have demonstrated that bilateral ablations of the auditory cortex have little effect on simple sound intensity and frequency-based behaviors. In the rat, for example, early experiments have shown that auditory ablations result in virtually no effect on the rat's ability to either detect tones or discriminate frequencies. Such lesion experiments, however, typically examine an animal's performance some time after recovery from ablation surgery. As such, they demonstrate that the cortex is not essential for simple auditory behaviors in the long run. Our study further explores the role of cortex in basic auditory perception by examining whether the cortex is normally involved in these behaviors. In these experiments we reversibly inactivated the rat primary auditory cortex (AI) using the GABA agonist muscimol, while the animals performed a simple auditory task. At the same time we monitored the rat's auditory activity by recording auditory evoked potentials (AEP) from the cortical surface. In contrast to lesion studies, the rapid time course of these experimental conditions preclude reorganization of the auditory system that might otherwise compensate for the loss of cortical processing. Soon after bilateral muscimol application to their AI region, our rats exhibited an acute and profound inability to detect tones. After a few hours this state was followed by a gradual recovery of normal hearing, first of tone detection and, much later, of the ability to discriminate frequencies. Surface muscimol application, at the same time, drastically altered the normal rat AEP. Some of the normal AEP components vanished nearly instantaneously to unveil an underlying waveform, whose size was related to the severity of accompanying behavioral deficits. These results strongly suggest that the cortex is directly involved in basic acoustic processing. Along with observations from accompanying multiunit experiments that related the AEP to AI neuronal activity, our results suggest that a critical amount of activity in the auditory cortex is necessary for normal hearing. It is likely that the involvement of the cortex in simple auditory perceptions has hitherto not been clearly understood because of underlying recovery processes that, in the long-term, safeguard fundamental auditory abilities after cortical injury.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Iiro P. Jääskeläinen ◽  
Jyrki Ahveninen

The ability to concentrate on relevant sounds in the acoustic environment is crucial for everyday function and communication. Converging lines of evidence suggests that transient functional changes in auditory-cortex neurons, “short-term plasticity”, might explain this fundamental function. Under conditions of strongly focused attention, enhanced processing of attended sounds can take place at very early latencies (~50 ms from sound onset) in primary auditory cortex and possibly even at earlier latencies in subcortical structures. More robust selective-attention short-term plasticity is manifested as modulation of responses peaking at ~100 ms from sound onset in functionally specialized nonprimary auditory-cortical areas by way of stimulus-specific reshaping of neuronal receptive fields that supports filtering of selectively attended sound features from task-irrelevant ones. Such effects have been shown to take effect in ~seconds following shifting of attentional focus. There are findings suggesting that the reshaping of neuronal receptive fields is even stronger at longer auditory-cortex response latencies (~300 ms from sound onset). These longer-latency short-term plasticity effects seem to build up more gradually, within tens of seconds after shifting the focus of attention. Importantly, some of the auditory-cortical short-term plasticity effects observed during selective attention predict enhancements in behaviorally measured sound discrimination performance.


2019 ◽  
Author(s):  
Jong Hoon Lee ◽  
Xiaoqin Wang ◽  
Daniel Bendor

AbstractIn primary auditory cortex, slowly repeated acoustic events are represented temporally by phase-locked activity of single neurons. Single-unit studies in awake marmosets (Callithrix jacchus) have shown that a sub-population of these neurons also monotonically increase or decrease their average discharge rate during stimulus presentation for higher repetition rates. Building on a computational single-neuron model that generates phase-locked responses with stimulus evoked excitation followed by strong inhibition, we find that stimulus-evoked short-term depression is sufficient to produce synchronized monotonic positive and negative responses to slowly repeated stimuli. By exploring model robustness and comparing it to other models for adaptation to such stimuli, we conclude that short-term depression best explains our observations in single-unit recordings in awake marmosets. Using this model, we emulated how single neurons could encode and decode multiple aspects of an acoustic stimuli with the monotonic positive and negative encoding of a given stimulus feature. Together, our results show that a simple biophysical mechanism in single neurons can allow a more complex encoding and decoding of acoustic stimuli.


2007 ◽  
Vol 98 (3) ◽  
pp. 1763-1774 ◽  
Author(s):  
Jennifer K. Bizley ◽  
Fernando R. Nodal ◽  
Carl H. Parsons ◽  
Andrew J. King

Although the auditory cortex is known to be essential for normal sound localization in the horizontal plane, its contribution to vertical localization has not so far been examined. In this study, we measured the acuity with which ferrets could discriminate between two speakers in the midsagittal plane before and after silencing activity bilaterally in the primary auditory cortex (A1). This was achieved either by subdural placement of Elvax implants containing the GABAA receptor agonist muscimol or by making aspiration lesions after determining the approximate location of A1 electrophysiologically. Psychometric functions and minimum audible angles were measured in the upper hemifield for 500-, 200-, and 40-ms noise bursts. Muscimol-Elvax inactivation of A1 produced a small but significant deficit in the animals’ ability to localize brief (40-ms) sounds, which was reversed after removal of the Elvax implants. A similar deficit in vertical localization was observed after bilateral aspiration lesions of A1, whereas performance at longer sound durations was unaffected. Another group of ferrets received larger lesions, encompassing both primary and nonprimary auditory cortical areas, and showed a greater deficit with performance being impaired for long- and short-duration (500- and 40-ms, respectively) stimuli. These data suggest that the integrity of the auditory cortex is required to successfully utilize spectral localization cues, which are thought to provide the basis for vertical localization, and that multiple cortical fields, including A1, contribute to this task.


2012 ◽  
Vol 107 (12) ◽  
pp. 3296-3307 ◽  
Author(s):  
Nadja Schinkel-Bielefeld ◽  
Stephen V. David ◽  
Shihab A. Shamma ◽  
Daniel A. Butts

Intracellular studies have revealed the importance of cotuned excitatory and inhibitory inputs to neurons in auditory cortex, but typical spectrotemporal receptive field models of neuronal processing cannot account for this overlapping tuning. Here, we apply a new nonlinear modeling framework to extracellular data recorded from primary auditory cortex (A1) that enables us to explore how the interplay of excitation and inhibition contributes to the processing of complex natural sounds. The resulting description produces more accurate predictions of observed spike trains than the linear spectrotemporal model, and the properties of excitation and inhibition inferred by the model are furthermore consistent with previous intracellular observations. It can also describe several nonlinear properties of A1 that are not captured by linear models, including intensity tuning and selectivity to sound onsets and offsets. These results thus offer a broader picture of the computational role of excitation and inhibition in A1 and support the hypothesis that their interactions play an important role in the processing of natural auditory stimuli.


Author(s):  
Jennifer Leigh Mohn ◽  
Joshua D Downer ◽  
Kevin N. O'Connor ◽  
Jeffrey Scott Johnson ◽  
Mitchell L Sutter

Selective attention is necessary to sift through, form a coherent percept of, and make behavioral decisions on the vast amount of information present in most sensory environments. How and where selective attention is employed in cortex and how this perceptual information then informs the relevant behavioral decisions is still not well understood. Studies probing selective attention and decision making in visual cortex have been enlightening as to how sensory attention might work in that modality; whether or not similar mechanisms are employed in auditory attention is not yet clear. Therefore, we trained rhesus macaques on a feature selective attention task, where they switched between reporting changes in temporal (amplitude modulation, AM) and spectral (carrier bandwidth) features of a broadband noise stimulus. We investigated how the encoding of these features by single neurons in primary (A1) and secondary (middle lateral belt, ML) auditory cortex were affected by the different attention conditions. We found that neurons in A1 and ML showed mixed-selectivity to the sound and task features. We found no difference in AM encoding between the attention conditions. We found that choice-related activity in both A1 and ML neurons shifts between attentional conditions. This finding suggests that choice-related activity in auditory cortex does not simply reflect motor preparation or action, and supports the relationship between reported choice-related activity and the decision and perceptual process.


2005 ◽  
Vol 94 (3) ◽  
pp. 1904-1911 ◽  
Author(s):  
Peter Lakatos ◽  
Ankoor S. Shah ◽  
Kevin H. Knuth ◽  
Istvan Ulbert ◽  
George Karmos ◽  
...  

EEG oscillations are hypothesized to reflect cyclical variations in the neuronal excitability, with particular frequency bands reflecting differing spatial scales of brain operation. However, despite decades of clinical and scientific investigation, there is no unifying theory of EEG organization, and the role of ongoing activity in sensory processing remains controversial. This study analyzed laminar profiles of synaptic activity [current source density CSD] and multiunit activity (MUA), both spontaneous and stimulus-driven, in primary auditory cortex of awake macaque monkeys. Our results reveal that the EEG is hierarchically organized; delta (1–4 Hz) phase modulates theta (4–10 Hz) amplitude, and theta phase modulates gamma (30–50 Hz) amplitude. This oscillatory hierarchy controls baseline excitability and thus stimulus-related responses in a neuronal ensemble. We propose that the hierarchical organization of ambient oscillatory activity allows auditory cortex to structure its temporal activity pattern so as to optimize the processing of rhythmic inputs.


Sign in / Sign up

Export Citation Format

Share Document