Influence of absorption enhancers (bile salts) and the preservative (benzalkonium chloride) on mucociliary function and permeation barrier function in rabbit tracheas

1998 ◽  
Vol 6 (3) ◽  
pp. 225-230 ◽  
Author(s):  
Kazuhiro Morimoto ◽  
Yuriko Uehara ◽  
Kazunori Iwanaga ◽  
Masawo Kakemi ◽  
Yoshihiro Ohashi ◽  
...  
2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Naoto Tokuda ◽  
Yasushi Kitaoka ◽  
Akiko Matsuzawa ◽  
Ayaka Tsukamoto ◽  
Kana Sase ◽  
...  

Purpose. The aim of the present study was to examine the effects of switching from Latanoprost ophthalmic solution containing a preservative to preservative-free Tafluprost ophthalmic solution or Tafluprost containing a preservative on ocular surfaces. Materials and Methods. Forty patients (40 eyes) with glaucoma (mean age: 62.0 ± 10.9 years) using Latanoprost with preservative for six months or longer were assigned either to a Tafluprost-containing-preservative group (20 eyes) or preservative-free-Tafluprost group (20 eyes). The intraocular pressure, corneal epithelial barrier function (fluorescein uptake concentration with fluorophotometer FL-500), superficial punctate keratopathy (AD classification), and tear film breakup time (TBUT) were assessed before switching and at 12 weeks after switching. Results. No significant differences in intraocular pressure were noted after switching in either group. Corneal epithelial barrier function was improved significantly after switching in both the Tafluprost-containing-preservative and the preservative-free-Tafluprost groups. There were no significant differences in AD scores after switching in the Tafluprost-containing-preservative group, but significant improvements were noted in the preservative-free-Tafluprost group. No significant differences in TBUT were noted in the Tafluprost-containing-preservative or preservative-free-Tafluprost groups after switching. Conclusion. After switching from preservative Latanoprost to Tafluprost containing-preservative or preservative-free Tafluprost, corneal epithelial barrier function was improved while the intraocular pressure reduction was retained.


2017 ◽  
Vol 35 (3) ◽  
pp. 217-223 ◽  
Author(s):  
Jung-Chin Chang ◽  
Ulrich Beuers ◽  
Ronald P.J. Oude Elferink

Background: Primary biliary cholangitis (PBC; previously referred to as primary biliary cirrhosis) is a chronic fibrosing cholangiopathy with the signature of an autoimmune disease and features of intrahepatic cholestasis. Immunosuppressing treatments are largely unsuccessful. Responsiveness to ursodeoxycholic acid and reduced expression of anion exchanger 2 (AE2) on canalicular membranes and small bile ducts underline the importance of bicarbonate transportation in its disease mechanism. Soluble adenylyl cyclase (sAC; ADCY10) is an evolutionarily conserved bicarbonate sensor that regulates apoptosis, barrier function and TNF signaling. Key Messages: The biliary epithelium defends against the toxic bile by bicarbonate secretion and by maintaining a tight barrier. Passive diffusion of weak acid conjugates (e.g. bile salts and other toxins) across plasma membrane is pH-dependent. Reduced AE2 expression results in both reduced bicarbonate secretion and accumulation of bicarbonate in the cells. Increased intracellular bicarbonate leads to increased sAC activity, which regulates bile salt-induced apoptosis. Reduced bicarbonate secretion causes more bile salts to enter cells, which further increase sAC activity by releasing intracellular Ca2+ store. In vitro studies demonstrate that inhibition of sAC not only corrects sensitization to bile salt-induced apoptosis as a result of AE2 down-regulation but also prevents bile salt-induced apoptosis altogether. Targeting sAC is also likely to slow down disease progression by strengthening the barrier function of biliary epithelia and by reducing oxidative stress as a result of chronic inflammation. Conclusions: sAC is a potential therapeutic target for PBC. More in vitro and in vivo studies are needed to understand how sAC regulates bile salt-induced apoptosis and to establish its therapeutic value in PBC and other cholestatic cholangiopathies.


1999 ◽  
Vol 43 (4) ◽  
pp. 745-751 ◽  
Author(s):  
Betsy C. Herold ◽  
Risa Kirkpatrick ◽  
Daniel Marcellino ◽  
Anna Travelstead ◽  
Valentina Pilipenko ◽  
...  

ABSTRACT The development of new, safe, topical microbicides for intravaginal use for the prevention of sexually transmitted diseases is imperative. Previous studies have suggested that bile salts may inhibit human immunodeficiency virus infection; however, their activities against other sexually transmitted pathogens have not been reported. To further explore the potential role of bile salts in preventing sexually transmitted diseases, we examined the in vitro activities and cytotoxicities of select bile salts against Chlamydia trachomatis, herpes simplex virus (types 1 and 2),Neisseria gonorrhoeae, and human immunodeficiency virus in comparison to those of nonoxynol-9 and benzalkonium chloride using both primary cells and cell lines derived from the human female genital tract. We found that taurolithocholic acid 3-sulfate and a combination of glycocholic acid and taurolithocholic acid 3-sulfate showed excellent activity against all of the pathogens assayed. Moreover, taurolithocholic acid 3-sulfate alone or in combination was less cytotoxic than nonoxynol-9 and benzalkonium chloride. Thus, taurolithocholic acid 3-sulfate alone or in combination warrants further evaluation as a candidate topical microbicidal agent.


2011 ◽  
Vol 301 (2) ◽  
pp. G203-G209 ◽  
Author(s):  
Xin Chen ◽  
Tadayuki Oshima ◽  
Toshihiko Tomita ◽  
Hirokazu Fukui ◽  
Jiro Watari ◽  
...  

Experimental models for esophageal epithelium in vitro either suffer from poor differentiation or complicated culture systems. An air-liquid interface system with normal human bronchial epithelial cells can serve as a model of esophageal-like squamous epithelial cell layers. Here, we explore the influence of bile acids on barrier function and tight junction (TJ) proteins. The cells were treated with taurocholic acid (TCA), glycocholic acid (GCA), or deoxycholic acid (DCA) at different pH values, or with pepsin. Barrier function was measured by transepithelial electrical resistance (TEER) and the diffusion of paracellular tracers (permeability). The expression of TJ proteins, including claudin-1 and claudin-4, was examined by Western blotting of 1% Nonidet P-40-soluble and -insoluble fractions. TCA and GCA dose-dependently decreased TEER and increased paracellular permeability at pH 3 after 1 h. TCA (4 mM) or GCA (4 mM) did not change TEER and permeability at pH 7.4 or pH 4. The combination of TCA and GCA at pH 3 significantly decreased TEER and increased permeability at lower concentrations (2 mM). Pepsin (4 mg/ml, pH 3) did not have any effect on barrier function. DCA significantly decreased the TEER and increased permeability at pH 6, a weakly acidic condition. TCA (4 mM) and GCA (4 mM) significantly decreased the insoluble fractions of claudin-1 and claudin-4 at pH 3. In conclusion, acidic bile salts disrupted the squamous epithelial barrier function partly by modulating the amounts of claudin-1 and claudin-4. These results provide new insights for understanding the role of TJ proteins in esophagitis.


2004 ◽  
Vol 287 (2) ◽  
pp. G399-G407 ◽  
Author(s):  
Nigel B. Campbell ◽  
Craig G. Ruaux ◽  
Donnie E. Shifflett ◽  
Jöerg M. Steiner ◽  
David A. Williams ◽  
...  

We have previously shown rapid in vitro recovery of barrier function in porcine ischemic-injured ileal mucosa, attributable principally to reductions in paracellular permeability. However, these experiments did not take into account the effects of luminal contents, such as bile salts. Therefore, the objective of this study was to evaluate the role of physiological concentrations of deoxycholic acid in recovery of mucosal barrier function. Porcine ileum was subjected to 45 min of ischemia, after which mucosa was mounted in Ussing chambers and exposed to varying concentrations of deoxycholic acid. The ischemic episode resulted in significant reductions in transepithelial electrical resistance (TER), which recovered to control levels of TER within 120 min, associated with significant reductions in mucosal-to-serosal 3H-labeled mannitol flux. However, treatment of ischemic-injured tissues with 10−5 M deoxycholic acid significantly inhibited recovery of TER with significant increases in mucosal-to-serosal 3H-labeled mannitol flux, whereas 10−6 M deoxycholic acid had no effect. Histological evaluation at 120 min revealed complete restitution regardless of treatment, indicating that the breakdown in barrier function was due to changes in paracellular permeability. Similar effects were noted with the application of 10−5 M taurodeoxycholic acid, and the effects of deoxycholic acid were reversed with application of the Ca2+-mobilizing agent thapsigargin. Deoxycholic acid at physiological concentrations significantly impairs recovery of epithelial barrier function by an effect on paracellular pathways, and these effects appear to be Ca2+ dependent.


2003 ◽  
Vol 55 (12) ◽  
pp. 1601-1606 ◽  
Author(s):  
Yahya Mrestani ◽  
Beate Bretschneider ◽  
Albert Härtl ◽  
Reinhard H. H. Neubert

Author(s):  
Rita Meyer ◽  
Zoltan Posalaky ◽  
Dennis Mcginley

The Sertoli cell tight junctional complexes have been shown to be the most important structural counterpart of the physiological blood-testis barrier. In freeze etch replicas they consist of extensive rows of intramembranous particles which are not only oriented parallel to one another, but to the myoid layer as well. Thus the occluding complex has both an internal and an overall orientation. However, this overall orientation to the myoid layer does not seem to be necessary to its barrier function. The 20 day old rat has extensive parallel tight junctions which are not oriented with respect to the myoid layer, and yet they are inpenetrable by lanthanum. The mechanism(s) for the control of Sertoli cell junction development and orientation has not been established, although such factors as the presence or absence of germ cells, and/or hormones, especially FSH have been implicated.


1979 ◽  
Vol 7 (6) ◽  
pp. 1323-1323
Author(s):  
H. DANIELSSON

Sign in / Sign up

Export Citation Format

Share Document