Homology modelling of dihydrofolate reductase from the malaria parasite

1996 ◽  
Vol 4 ◽  
pp. S105
Author(s):  
Thomas Lemcke ◽  
Inge T. Christensen ◽  
Flemming S. Jergensen
2001 ◽  
Vol 45 (11) ◽  
pp. 3122-3127 ◽  
Author(s):  
Mallika Imwong ◽  
Sasithon Pukrittakayamee ◽  
Sornchai Looareesuwan ◽  
Geoffrey Pasvol ◽  
Jean Poirreiz ◽  
...  

ABSTRACT Mutations in the Plasmodium falciparum gene (dhfr) encoding dihydrofolate reductase are associated with resistance to antifols. Plasmodium vivax, the more prevalent malaria parasite in Asia and the Americas, is considered antifol resistant. Functional polymorphisms in the dhfrgene of P. vivax (pvdhfr) were assessed by PCR-restriction fragment length polymorphism using blood samples taken from 125 patients with acute vivax malaria from three widely separated locations, Thailand (n = 100), India (n = 16), and Madagascar and the Comoros Islands (n = 9). Upon evaluation of the three important codons (encoding residues 57, 58, and 117) of P. vivax dhfr(pvdhfr), double- or triple-mutation genotypes were found in all but one case from Thailand (99%), in only three cases from India (19%) and in no cases from Madagascar or the Comoros Islands (P < 0.0001). The dhfr PCR products of P. vivax from 32 Thai patients treated with the antifolate sulfadoxine-pyrimethamine (S-P) were investigated. All samples showed either double (53%) or triple (47%) mutations. Following treatment, 34% of the patients had early treatment failures and only 10 (31%) of the patients cleared their parasitemias for 28 days. There were no significant differences in cure rates, but parasite reduction ratios at 48 h were significantly lower for patients whose samples showed triple mutations than for those whose samples showed double mutations (P = 0.01). The three mutations at the pvdhfr codons for residues 57, 58, and 117 are associated with high levels of S-P resistance in P. vivax. These mutations presumably arose from selection pressure.


Author(s):  
James F. Hainfeld ◽  
Frederic R. Furuya ◽  
Kyra Carbone ◽  
Martha Simon ◽  
Beth Lin ◽  
...  

A recently developed 1.4 nm gold cluster has been found to be useful in labeling macromolecular sites to 1-3 nm resolution. The gold compound is organically derivatized to contain a monofunctional arm for covalent linking to biomolecules. This may be used to mark a specific site on a structure, or to first label a component and then reassemble a multicomponent macromolecular complex. Two examples are given here: the chaperonin groEL and ribosomes.Chaperonins are essential oligomeric complexes that mediate nascent polypeptide chain folding to produce active proteins. The E. coli chaperonin, groEL, has two stacked rings with a central hole ∽6 nm in diameter. The protein dihydrofolate reductase (DHFR) is a small protein that has been used in chain folding experiments, and serves as a model substrate for groEL. By labeling the DHFR with gold, its position with respect to the groEL complex can be followed. In particular, it was sought to determine if DHFR refolds on the external surface of the groEL complex, or whether it interacts in the central cavity.


Sign in / Sign up

Export Citation Format

Share Document