In situ detection of calcium ions with chemically modified microcantilevers

2002 ◽  
Vol 17 (4) ◽  
pp. 337-343 ◽  
Author(s):  
H Ji
2021 ◽  
Author(s):  
John Blanchard ◽  
Barbara Ripka ◽  
Benjamin A. Suslick ◽  
Dario Gelevski ◽  
Teng Wu ◽  
...  

<div>Signal Amplification By Reversible Exchange (SABRE) boosts NMR signals of various nuclei enabling new applications spanning from magnetic resonance imaging to analytical chemistry and fundamental physics. SABRE is especially well positioned for continuous generation of enhanced magnetization on a large scale, however, several challenges need to be addressed for accomplishing this goal. Specifically, SABRE requires (i) a specialized catalyst capable of reversible H<sub>2</sub> activation and (ii) physical transfer of the sample from the point of magnetization generation to the point of detection (e.g., a high-field or a benchtop NMR spectrometer). Moreover, (iii) continuous parahydrogen bubbling accelerates solvent (e.g., methanol) evaporation, thereby limiting the experimental window to tens of minutes per sample.</div><div>In this work, we demonstrate a strategy to rapidly generate the best-to-date precatalyst (a compound that is chemically modified in the course of the reaction to yield the catalyst) for SABRE, [Ir(IMes)(COD)Cl] (IMes = 1,3-bis-(2,4,6-trimethylphenyl)-imidazol-2-ylidene, COD = cyclooctadiene) via a highly accessible synthesis. Second, we measure hyperpolarized samples using a home-built zero-field NMR spectrometer and study the field dependence of hyperpolarization directly in the detection apparatus, eliminating the need to physically move the sample during the experiment. Finally, we prolong the measurement time and reduce evaporation by presaturating parahydrogen with the solvent vapor before bubbling into the sample. These advancements extend opportunities for exploring SABRE hyperpolarization by researchers from various fields and pave the way to producing large quantities of hyperpolarized material for long-lasting detection of SABRE-derived nuclear magnetization.</div>


2018 ◽  
Vol 10 (17) ◽  
pp. 14410-14417 ◽  
Author(s):  
Meng Gao ◽  
Yunxia Li ◽  
Xiaohui Chen ◽  
Shiwu Li ◽  
Li Ren ◽  
...  

2021 ◽  
Author(s):  
John Blanchard ◽  
Barbara Ripka ◽  
Benjamin A. Suslick ◽  
Dario Gelevski ◽  
Teng Wu ◽  
...  

<div>Signal Amplification By Reversible Exchange (SABRE) boosts NMR signals of various nuclei enabling new applications spanning from magnetic resonance imaging to analytical chemistry and fundamental physics. SABRE is especially well positioned for continuous generation of enhanced magnetization on a large scale, however, several challenges need to be addressed for accomplishing this goal. Specifically, SABRE requires (i) a specialized catalyst capable of reversible H<sub>2</sub> activation and (ii) physical transfer of the sample from the point of magnetization generation to the point of detection (e.g., a high-field or a benchtop NMR spectrometer). Moreover, (iii) continuous parahydrogen bubbling accelerates solvent (e.g., methanol) evaporation, thereby limiting the experimental window to tens of minutes per sample.</div><div>In this work, we demonstrate a strategy to rapidly generate the best-to-date precatalyst (a compound that is chemically modified in the course of the reaction to yield the catalyst) for SABRE, [Ir(IMes)(COD)Cl] (IMes = 1,3-bis-(2,4,6-trimethylphenyl)-imidazol-2-ylidene, COD = cyclooctadiene) via a highly accessible synthesis. Second, we measure hyperpolarized samples using a home-built zero-field NMR spectrometer and study the field dependence of hyperpolarization directly in the detection apparatus, eliminating the need to physically move the sample during the experiment. Finally, we prolong the measurement time and reduce evaporation by presaturating parahydrogen with the solvent vapor before bubbling into the sample. These advancements extend opportunities for exploring SABRE hyperpolarization by researchers from various fields and pave the way to producing large quantities of hyperpolarized material for long-lasting detection of SABRE-derived nuclear magnetization.</div>


2000 ◽  
Vol 41 (4-5) ◽  
pp. 301-308 ◽  
Author(s):  
N. Noda ◽  
H. Ikuta ◽  
Y. Ebie ◽  
A. Hirata ◽  
S. Tsuneda ◽  
...  

Fluorescent antibody technique by the monoclonal antibody method is very useful and helpful for the rapid quantification and in situ detection of the specific bacteria like nitrifiers in a mixed baxterial habitat such as a biofilm. In this study, twelve monoclonal antibodies against Nitrosomonas europaea (IFO14298) and sixteen against Nitrobacter winogradskyi (IFO14297) were raised from splenocytes of mice (BALB/c). It was found that these antibodies exhibited little cross reactivity against various kinds of heterotrophic bacteria. The direct cell count method using monoclonal antibodies could exactly detect and rapidly quantify N. europaea and N. winogradskyi. Moreover, the distribution of N. europaea and N. winogradskyi in a biofilm could be examined by in situ fluorescent antibody technique. It was shown that most of N. winogradskyi existed near the surface part and most of N. europaea existed at the inner part of the polyethylene glycol (PEG) gel pellet, which had entrapped activated sludge and used in a landfill leachate treatment reactor. It was suggested that this monoclonal antibody method was utilized for estimating and controlling the population of nitrifying bacteria as a quick and favorable tool.


2021 ◽  
Vol 10 (2) ◽  
pp. 319
Author(s):  
Hee Cheol Yang ◽  
Won Jong Rhee

Because cancers are heterogeneous, it is evident that multiplexed detection is required to achieve disease diagnosis with high accuracy and specificity. Extracellular vesicles (EVs) have been a subject of great interest as sources of novel biomarkers for cancer liquid biopsy. However, EVs are nano-sized particles that are difficult to handle; thus, it is necessary to develop a method that enables efficient and straightforward EV biomarker detection. In the present study, we developed a method for single step in situ detection of EV surface proteins and inner miRNAs simultaneously using a flow cytometer. CD63 antibody and molecular beacon-21 were investigated for multiplexed biomarker detection in normal and cancer EVs. A phospholipid-polymer-phospholipid conjugate was introduced to induce clustering of the EVs analyzed using nanoparticle tracking analysis, which enhanced the detection signals. As a result, the method could detect and distinguish cancer cell-derived EVs using a flow cytometer. Thus, single step in situ detection of multiple EV biomarkers using a flow cytometer can be applied as a simple, labor- and time-saving, non-invasive liquid biopsy for the diagnosis of various diseases, including cancer.


Optik ◽  
2021 ◽  
pp. 167711
Author(s):  
Enlai Wan ◽  
Zhongmou Sun ◽  
Yuzhu Liu

Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5090
Author(s):  
Qingsheng Liu ◽  
Jinjia Guo ◽  
Wangquan Ye ◽  
Kai Cheng ◽  
Fujun Qi ◽  
...  

As a powerful in situ detection technique, Raman spectroscopy is becoming a popular underwater investigation method, especially in deep-sea research. In this paper, an easy-to-operate underwater Raman system with a compact design and competitive sensitivity is introduced. All the components, including the optical module and the electronic module, were packaged in an L362 × Φ172 mm titanium capsule with a weight of 20 kg in the air (about 12 kg in water). By optimising the laser coupling mode and focusing lens parameters, a competitive sensitivity was achieved with the detection limit of SO42− being 0.7 mmol/L. The first sea trial was carried out with the aid of a 3000 m grade remotely operated vehicle (ROV) “FCV3000” in October 2018. Over 20,000 spectra were captured from the targets interested, including methane hydrate, clamshell in the area of cold seep, and bacterial mats around a hydrothermal vent, with a maximum depth of 1038 m. A Raman peak at 2592 cm−1 was found in the methane hydrate spectra, which revealed the presence of hydrogen sulfide in the seeping gas. In addition, we also found sulfur in the bacterial mats, confirming the involvement of micro-organisms in the sulfur cycle in the hydrothermal field. It is expected that the system can be developed as a universal deep-sea survey and detection equipment in the near future.


Sign in / Sign up

Export Citation Format

Share Document