Memsys–NTU partnership aims to enhance water desalination technology

2011 ◽  
Vol 2011 (2) ◽  
pp. 1-16 ◽  
2020 ◽  
Author(s):  
Matthias Wessling

Many industrial and agricultural applications require the treatment of water streams containing high concentrations of ionic species for closing material cycles. High concentration factors are often desired, but hard to achieve with established thermal or membrane-based water treatment technologies at low energy consumptions. Capacitive deionization processes are normally assumed as relevant for the treatment of low salinity solutions only. Flowelectrode capacitive deionization (FCDI), on the other hand, is an upcoming electrically driven water desalination technology, which allows the continuous desalination and concentration of saline water streams even at elevated salinities. Ions are adsorbed electrostatically in pumpable carbon flow electrodes, which enable a range of new process designs.In this article, it is shown that continuously operated FCDI systems can be applied for the treatment of salt brines. Concentrations of up to 291.5 g/L NaCl were reached in the concentrate product stream. Based on this, FCDI is a promising technology for brine treatment and salt recovery. Additionally, a reduction of the energy demand by more than 70% is demonstrated by introducing multiple cell pairs into a continuous FCDI system. While the economic feasibility is not investigated here, the results show that FCDI systems may compete with established technologies regarding their energydemand.


Author(s):  
Natasha C. Wright ◽  
Amos G. Winter

This paper provides justification for solar-powered electrodialysis desalination systems for rural Indian villages. It is estimated that 11% of India’s 800 million people living in rural areas do not have access to an improved water source. If the source’s quality in regards to biological, chemical, or physical contaminants is also considered, this percentage is even higher. User interviews conducted by the authors and in literature reveal that users judge the quality of their water source based on its aesthetic quality (taste, odor, and temperature). Seventy-three percent of Indian villages rely on groundwater as their primary drinking supply. However, saline groundwater underlies approximately 60% of the land area in India. Desalination is necessary in order to improve the aesthetics of this water (by reducing salinity below the taste threshold) and remove contaminants that cause health risks. Both technical and socioeconomic factors were considered to identify the critical design requirements for inland water desalination in India. An off-grid power system is among those requirements due to the lack of grid access or intermittent supply, problems faced by half of Indian villages. The same regions in India that have high groundwater salinity also have the advantage of high solar potential, making solar a primary candidate. Within the salinity range of groundwater found in inland India, electrodialysis would substantially reduce the energy consumption to desalinate compared to reverse osmosis, which is the standard technology used for village-level systems. This energy savings leads to a smaller solar array required for electrodialysis systems, translating to reduced capital costs.


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5185
Author(s):  
Gbenro Folaranmi ◽  
Mikhael Bechelany ◽  
Philippe Sistat ◽  
Marc Cretin ◽  
Francois Zaviska

Capacitive deionization is an emerging brackish water desalination technology whose principle lies in the utilization of porous electrodes (activated carbon materials) to temporarily store ions. Improving the properties of carbon material used as electrodes have been the focus of recent research, as this is beneficial for overall efficiency of this technology. Herein, we have synthesized a composite of activated carbon/graphene oxide electrodes by using a simple blending process in order to improve the hydrophilic property of activated carbon. Graphene oxide (GO) of different weight ratios was blended with commercial Activated carbon (AC) and out of all the composites, AC/GO-15 (15 wt.% of GO) exhibited the best electrochemical and salt adsorption performance in all operating conditions. The as prepared AC and AC/GO-x (x = 5, 10, 15 and 20 wt.% of GO) were characterized by cyclic voltammetry and their physical properties were also studied. The salt adsorption capacity (SAC) of AC/GO-15 at an operating window of 1.0 V is 5.70 mg/g with an average salt adsorption rate (ASAR) of 0.34 mg/g/min at a 400 mg/L salt initial concentration and has a capacitance of 75 F/g in comparison to AC with 3.74 mg/g of SAC, ASAR of 0.23 mg/g/min and a capacitance of 56 F/g at the same condition. This approach could pave a new way to produce a highly hydrophilic carbon based electrode material in CDI.


2019 ◽  
Vol 391 ◽  
pp. 195-200 ◽  
Author(s):  
Maziyar Sabet ◽  
H. Soleimani ◽  
E. Mohammadian ◽  
S. Hosseini

Though above 70% of the Earth is covered by water, most of the seas and oceans are unusable for drinking. Freshwater lakes, rivers and underground aquifers imply 2.5 percent of the global’s whole freshwater supply. Unfortunately, in addition to being scarce, fresh water is dreadfully unevenly spread. Enhanced demand for freshwater is a global concern. In many countries demanding is further than regular reserves. Sensible use of water, reducing spreading losses and upgraded treatment of recycled water to mitigate the concern, though, water scarcity is still presented consequently desalination of seawater is highly required. Graphene, a single sheet of carbon atoms, possibly will deliver the principal for a novel category of extremely permeable membranes for water purification and desalination. Though, a one atom thickness graphene reveals both brilliant mechanical strength and impermeability to atoms as small as helium. High-density, subnanometer pores within graphene have the potential for ultra-fast water permeance and high solute rejection as the atomic thinness makes slight resistance to stream which deters the transfer of solutes bigger than the pores. The two-dimensional, nanoporous membrane is expected to display orders-of-magnitude permeability and selectivity enhancement over current separation membranes for processes such as brackish water, water softening, or nanofiltration. This study is aimed that the existing desalination methods are not adequate to upgrade water sources unless the desalination technologies are improved significantly. Nanotechnology and utilizing graphene will deliver desalination technology to meet the requirements in the near future. Lately, novel procedures have been technologically progressed by means of nanotechnology and applying graphene for water desalination. This research will emphasize the concept of water desalination for the near futures.


1970 ◽  
Vol 11 (10) ◽  
pp. 858-864
Author(s):  
M. V. Kolodin

2021 ◽  
Vol 329 ◽  
pp. 01039
Author(s):  
Qiaonan Yang ◽  
Can Hu ◽  
Jie Li ◽  
Xiaokang Yi ◽  
Jie Zhang ◽  
...  

The serious salinization of farmland soil and the shortage of water resources in arid areas are becoming more and more serious; In order to solve the problem of shortage of fresh water resources, find a resource that can be converted into fresh water; Brackish water is derived from farmland saline alkali land. Brackish water desalination technology has increased interest in scientists' research. However, brackish water can be used as an effective substitute for freshwater conversion because of its low salt concentration and can also be widely used in many water deficient countries. However, partial or total desalting of brackish water is essential to meet the water quality requirements of production and life. The selection of appropriate water resources desalination technology needs to understand the operation methods and technical means of the existing brackish water desalination process. Proper combination of desalination technologies can improve the efficiency of brackish water desalination. This review provides the latest advances in data, materials and categories that can help select and design requirements for specific applications.


Author(s):  
David Cohen-Tanugi ◽  
Shreya H. Dave ◽  
Ronan K. McGovern ◽  
V John H. Lienhard ◽  
Jeffrey C. Grossman

Sign in / Sign up

Export Citation Format

Share Document