5695554 Foundry sand additives and method of casting metal, comprising a humic acid-containing ore and in-situ activated carbon or graphite for reduced voc emissions

1998 ◽  
Vol 6 (2) ◽  
pp. 160
2021 ◽  
pp. 125995
Author(s):  
So Yeon Yoon ◽  
Seok Byum Jang ◽  
Kien Tiek Wong ◽  
Hyeseong Kim ◽  
Min Ji Kim ◽  
...  

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Gopal Krishna Gupta ◽  
Pinky Sagar ◽  
Sumit Kumar Pandey ◽  
Monika Srivastava ◽  
A. K. Singh ◽  
...  

AbstractHerein, we demonstrate the fabrication of highly capacitive activated carbon (AC) using a bio-waste Kusha grass (Desmostachya bipinnata), by employing a chemical process followed by activation through KOH. The as-synthesized few-layered activated carbon has been confirmed through X-ray powder diffraction, transmission electron microscopy, and Raman spectroscopy techniques. The chemical environment of the as-prepared sample has been accessed through FTIR and UV–visible spectroscopy. The surface area and porosity of the as-synthesized material have been accessed through the Brunauer–Emmett–Teller method. All the electrochemical measurements have been performed through cyclic voltammetry and galvanometric charging/discharging (GCD) method, but primarily, we focus on GCD due to the accuracy of the technique. Moreover, the as-synthesized AC material shows a maximum specific capacitance as 218 F g−1 in the potential window ranging from − 0.35 to + 0.45 V. Also, the AC exhibits an excellent energy density of ~ 19.3 Wh kg−1 and power density of ~ 277.92 W kg−1, respectively, in the same operating potential window. It has also shown very good capacitance retention capability even after 5000th cycles. The fabricated supercapacitor shows a good energy density and power density, respectively, and good retention in capacitance at remarkably higher charging/discharging rates with excellent cycling stability. Henceforth, bio-waste Kusha grass-derived activated carbon (DP-AC) shows good promise and can be applied in supercapacitor applications due to its outstanding electrochemical properties. Herein, we envision that our results illustrate a simple and innovative approach to synthesize a bio-waste Kusha grass-derived activated carbon (DP-AC) as an emerging supercapacitor electrode material and widen its practical application in electrochemical energy storage fields.


2015 ◽  
Vol 72 (3) ◽  
pp. 406-414
Author(s):  
Yubin Zeng ◽  
Ziyang Zeng ◽  
Junlin Wang

The morphology and surface characteristics of manganese dioxide (MnO2) formed in situ, which was prepared through the oxidation of MnSO4 using KMnO4, were studied. The effects of factors including the form of MnO2, dosage, pH, dosing sequence of in situ MnO2 on the enhanced coagulation were systematically evaluated. The results of analysis by the UV254 and permanganate index CODMn methods indicated that humic acid removal increased from 9.2 and 2.5% to 55.0 and 38.9%, when 10 mg/L of the in situ MnO2 was added in the presence of 2 mg/L of polyaluminum sulfate. The studies of orthogonal experiment revealed that coagulation was most affected by the pH, whereas the dosage of in situ MnO2 and slow stirring duration exhibited a weaker effect. At a pH value of 4.0, in situ MnO2 dosage of 10 mg/L, slow stir over 40 min, and the total solids content was 20 mg/L, the humic acid removal by UV254 and CODMn methods reached 71.2 and 61.2%. These results indicated that the presence of in situ MnO2 enhanced the coagulation and removal of humic acid from water.


2010 ◽  
Vol 113-116 ◽  
pp. 1870-1873
Author(s):  
Xiao Dong Zhu ◽  
Jun Shen ◽  
Yu Liu

The removal efficiencies of 4 air-cleaning materials on formaldehyde and VOC emissions from particleboards were examined in this paper. The effect of activated carbon and photo catalyst on formaldehyde and VOC emissions removal was notable in short time. The effect of scavenger was obviously on formaldehyde removal for its synthetic mechanism. And the impact of bioenzyme on formaldehyde and VOC emissions from particleboards is dependent on the test conditions and it shows no impact on emissions in this experiment.


Sign in / Sign up

Export Citation Format

Share Document