Sulfur-anchored palm shell waste-based activated carbon for ultrahigh sorption of Hg(II) for in-situ groundwater treatment

2021 ◽  
pp. 125995
Author(s):  
So Yeon Yoon ◽  
Seok Byum Jang ◽  
Kien Tiek Wong ◽  
Hyeseong Kim ◽  
Min Ji Kim ◽  
...  
2016 ◽  
Vol 115 ◽  
pp. 337-342 ◽  
Author(s):  
Kien Tiek Wong ◽  
Nguk Chin Eu ◽  
Shaliza Ibrahim ◽  
Hyunook Kim ◽  
Yeomin Yoon ◽  
...  

Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 741 ◽  
Author(s):  
Choe Choong ◽  
Gooyong Lee ◽  
Min Jang ◽  
Chang Park ◽  
Shaliza Ibrahim

Magnesium silicate impregnated onto palm-shell waste activated carbon (PPAC) underwent mild hydrothermal treatment under one-pot synthesis, designated as PPAC-MC. Various impregnation ratios from 25 to 300% of MgSiO3 onto PPAC were tested. High levels of MgSiO3 led to high Cu(II) adsorption capacity. A ratio of 1:1 (PPAC-MS 100) was considered optimum because of its chemical stability in solution. The maximum adsorption capacity of PPAC-MS 100 for Cu(II) obtained by isotherm experiments was 369 mg g−1. The kinetic adsorption data fitted to pseudo-second-order model revealed as chemisorption. Increasing ionic strength reduced Cu(II) adsorption capacity due to the competition effect between Na+ and Cu2+. In addition, PPAC-MS 100 showed sufficient adsorption capacity for the removal of Zn(II), Al(III), Fe(II), Mn(II), and As(V), with adsorption capacities of 373 mg g−1, 244 mg g−1, 234 mg g−1, 562 mg g−1, 191 mg g−1, respectively. Three regeneration studies were also conducted. PPAC-MS was characterized using Fourier Transformed Infrared (FTIR), X-Ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Field Emission Scanning Electron Microscope (FESEM). Overall, PPAC-MS 100 is a competitive adsorbent due to its high sorption capacity and sufficient regeneration rate, while remaining economical through the reuse of palm-shell waste materials.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Gopal Krishna Gupta ◽  
Pinky Sagar ◽  
Sumit Kumar Pandey ◽  
Monika Srivastava ◽  
A. K. Singh ◽  
...  

AbstractHerein, we demonstrate the fabrication of highly capacitive activated carbon (AC) using a bio-waste Kusha grass (Desmostachya bipinnata), by employing a chemical process followed by activation through KOH. The as-synthesized few-layered activated carbon has been confirmed through X-ray powder diffraction, transmission electron microscopy, and Raman spectroscopy techniques. The chemical environment of the as-prepared sample has been accessed through FTIR and UV–visible spectroscopy. The surface area and porosity of the as-synthesized material have been accessed through the Brunauer–Emmett–Teller method. All the electrochemical measurements have been performed through cyclic voltammetry and galvanometric charging/discharging (GCD) method, but primarily, we focus on GCD due to the accuracy of the technique. Moreover, the as-synthesized AC material shows a maximum specific capacitance as 218 F g−1 in the potential window ranging from − 0.35 to + 0.45 V. Also, the AC exhibits an excellent energy density of ~ 19.3 Wh kg−1 and power density of ~ 277.92 W kg−1, respectively, in the same operating potential window. It has also shown very good capacitance retention capability even after 5000th cycles. The fabricated supercapacitor shows a good energy density and power density, respectively, and good retention in capacitance at remarkably higher charging/discharging rates with excellent cycling stability. Henceforth, bio-waste Kusha grass-derived activated carbon (DP-AC) shows good promise and can be applied in supercapacitor applications due to its outstanding electrochemical properties. Herein, we envision that our results illustrate a simple and innovative approach to synthesize a bio-waste Kusha grass-derived activated carbon (DP-AC) as an emerging supercapacitor electrode material and widen its practical application in electrochemical energy storage fields.


Sign in / Sign up

Export Citation Format

Share Document